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Foundations of Big Bang Cosmology: 
Nucleosynthesis and the CMB

Big Bang cosmology grew from the work of 
Gamow, Alpher, and Hermann in their attempts 
to explain the observed element abundances.

They predicted the existence of the 3K background
which was discovered 16 years later.
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A S pointed out by one of us, ' various nuclear species
must have originated not as the result of an equilib-

rium corresponding to a certain temperature and density,
but rather as a consequence of a continuous building-up
process arrested by a rapid expansion and cooling of the
primordial matter. According to this picture, we must
imagine the early stage of matter as a highly compressed
neutron gas (overheated neutral nuclear Quid) which
started decaying into protons and electrons when the gas
pressure fell down as the result of universal expansion. The
radiative capture of the still remaining neutrons by the
newly formed protons must have led first to the formation
of deuterium nuclei, and the subsequent neutron captures
resulted in the building up of heavier and heavier nuclei. It
must be remembered that, due to the comparatively short
time allowed for this procgss, ' the building up of heavier
nuclei must have proceeded just above the upper fringe of
the stable elements (short-lived Fermi elements), and the
present frequency distribution of various atomic species
was attained only somewhat later as the result of adjust-
ment of their electric charges by P-decay.
Thus the observed slope of the abundance curve must

not be related to the temperature of the original neutron
gas, but rather to the time period permitted by the expan-
sion process. Also, the individual abundances of various
nuclear species must depend not so much on their intrinsic
stabilities (mass defects) as on the values of their neutron
capture cross sections. The equations governing such a
building-up process apparently can be written in the form:

We may remark at first that the building-up process was
apparently completed when the temperature of the neutron
gas was still rather high, since otherwise the observed
abundances would have been strongly affected by the
resonances in the region of the slow neutrons. According to
Hughes, 2 the neutron capture cross sections of various
elements (for neutron energies of about 1 Mev) increase
exponentially with atomic number halfway up the periodic
system, remaining approximately constant for heavier
elements.
Using these cross sections, one finds by integrating

Eqs. (1)as shown in Fig. 1 that the relative abundances of
various nuclear species decrease rapidly for the lighter
elements and remain approximately constant for the ele-
ments heavier than silver. In order to fit the calculated
curve with the observed abundances' it is necessary to
assume thy integral of p„dt during the building-up period is
equal to 5X104 g sec./cm'.
On the other hand, according to the relativistic theory of

the expanding universe4 the density dependence on time is
given by p—10'/t~. Since the integral of this expression
diverges at t =0, it is necessary to assume that the building-
up process began at a certain time to, satisfying the
relation:

J (10'jt')dt =5X104,
&0

(2)

CAt ClMlKO

-2

which gives us to=20 sec. and p0=2.5)&105g sec./cm'. This
result may have two meanings: (a) for the higher densities
existing prior to that time the temperature of the neutron
gas was so high that no aggregation was taking place, (b)
the density of the universe never exceeded the value
2.5 )& 10' g sec./cm' which can possibly be understood if we

lsd—=f(t)(;,n; —;n;) i=1,2," 238 '0 /50 BO

where n; and a;. are the relative numbers and capture cross
sections for the nuclei of atomic weight i, and where f(t) is a
factor characterizing the decrease of the density with time.

803

Fio. 1.
Log of relative abundance

Atomic weight
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Historical PerspectiveHistorical Perspective

Intimate connection with CMB

Conditions for BBN:
Require T > 100 keV ⇒ t < 200 s
σv(p + n →D + γ) ≈ 5 × 10−20 cm3/s

⇒ nB ~ 1/σvt ~ 1017 cm-3

Today:
nBo ~ 10-7 cm-3

and
nB ~ R-3 ~ T3

Predicts the CMB temperature
To = (nBo / nB )1/3 TBBN ~10 K

Alpher
Herman
Gamow
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dxi/dt =Xxo—(pi p„/mi) xixo, (11b)
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I'ro. l. The time dependence of the proper distance I., the
densities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p "—10 "
/cm', p,"=10 "g/cm', p =10 ' g/cm, and p, —1 g/cm'.
See Eq. (12).j

dx, /d&=g(p, ipm/m, i)x, ixo g(—p,p~/m;)x, xo,
j=2, 3, , J, (11c)

where xp, x&, and x; are the concentrations by
weight of neutrons, protons, and nuclei of atomic
weight 2»j»J, respectively, m; the nuclear mass,
p the density of matter, ) the neutron decay
constant, and p, the eAective neutron capture
volume swept out per second by nuclei of species j.
Gamow' has sol~ed Eqs. (11a) and (11b) numeri-
cally, taking J= 1, and thereby describing the
building up of deuterons only. In general, Eqs. (11)
have a singularity at the origin because when t~0,
p —+~ as t &. In the approximation used by
Gamow this singularity is reduced because a rela-
tion for the capture cross section of protons for
neutrons is employed which makes pip (=oivp„)
vary as t '.
It may be seen readily that Eq. (11c) can be

written in the form

dx;/ds= (p, ,/Xm, i)x, i—(PJ/Xm;)xy,j=2, 3, , J, (11d)
where

s= j p (r)xo(r)dr, (11e)
We believe that a determination of the matter

density on the basis of only the first few light
elements is likely to be in error. Our experience
with integrations required to determine the relative
abundances of all elements" indicates that these
computed abundances are critically dependent upon
the choice of matter density. Furthermore, all
formulations of the neutron capture process which
have been made thus far neglect the thermal
dissociation of nuclei, which is one of the important
competing processes during the element forming
period if elements are formed from a very early time.
In order to clarify the difficulties associated with

the singularity at t=0, we digress here for an
examination of the equations employed to describe
the formation of the elements. These equations,
recently given by the authors, ' include neutron
decay and universal expansion but do not take into
account the effects of nuclear evaporation or any
processes other than radiative capture of neutrons.
In terms of concentrations by weight, x, m, n, /p„,=
rather than particle concentrations, n, , Eqs. (6)—(8)
of reference 7 may be written as

J
dxo/« =—Xxo—Z (p;p„/m, )x,xo, (11a)

the binding energy of the virtual triplet state of the deuteron,
and the radiation density constant a=7.65)C10 '~ erg cm '
deg. . Our expression di8'ers from that originally given by
Gamow because of algebraic errors contained in his results
and because he neglected the magnetic moment factor.

and

ln general, the integrand in Eq. (11e) is singular a,t
T =0, so that one must take r p )0. This implies
the choice of an initial time at which the element
forming process started. Physically, one may not
speak of an initial time because there were com-
peting processes which became unimportant as the
neutron capture process became important. Com-
peting processes such as photo-disintegration and
nuclear evaporation fall oR' approximately expo-
nentially with time so that neutron capture would
become significant rather rapidly, say in a time of
the order of 10' seconds. The inclusion of this type
of competing process in principle could be handled
and would yield a better estimate of the relative
abundances of the elements. However, without a
better knowledge of cosmology at very early t it
does not appear to be possible to avoid the above-
mentioned difficulty. Finally, if Eqs. (11a), (11b),
and (11c) are solved simultaneously for J=4, the
remaining equations for j)4 are given by Eq.
(11d) which is a simple first-order linear diIIerential
equation with constant coeRicients. Nevertheless,
Eqs. (11a) and (11b), which are the controlling
equations for the process, are not reduced to a
simple form and must still be solved in their present
form. Because of the above difficulties we find it
necessary to introduce the concept of a starting
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In Eqs. (7) and (8), I.=l/lp, y = (8sG/3), E2
= (c'/~RO'~), and p„~ and p„" are the densities of
matter and radiation when I = 1. In order to
integrate Eq. (6) and evaluate the integration
constant, it is necessary to specify the parameter
Ro and consequently /0, which gives the units in
which Ro is measured. Examination of Eq. (6)
indicates that Ro can be determined only if it is
possible to specify Ddl/dt)/L]i=io, p, and p„at any
given time. Since L(dl/dt)/L]i=io is the expansion
rate of space as determined by Hubble" and known,
therefore, only at the present time, since p is also
known now, and if we assume that p~&p, now, one
may evaluate Ro and E&. Introducing the value
of the present expansion rate of the universe
Ddl/dt)/L]i=i0=1. 8X10 ' sec 't. aking p ~. =10—»
g/cm' and l=lo= l.0" cm, i.e. , lo is the side of a
cube containing one gram of matter now, one
obtains R0=1.7X1027(—1)& cm and Kg=3.2X10 "
sec. '. The constants appearing in Eqs. (7) and (8)
involve the present densities of matter and radia-
tion. Clearly, in utilizing Eqs. (7) or (8) one may
introduce the density values at any other time
providing one specifies a value of I. at that time
which leads to the present value of the density of
matter. For convenience we have chosen lo to be
the side of a cube containing one gram of matter at
the present time, so that L, =1 now'. Furthermore,
we have again for convenience assumed that I.=O
at k=0. While Eq. (6) has a singularity at t=0
which is physically unreasonable, we have employed
the solutions in such a manner that the singularity
is of no consequence.
For purposes of computation it is convenient to

employ an approximate form for Eq. (7) which is
valid for early t, i.e., when

LL(~ "/~" )+(&2/v~" )L]&1.
The expansion of Eq. (7) which satisfies the above
inequality is

L = (4yp, ) &L'+(p -/6y&p, "-&)L'+(8y&p; &)
X [(3vp '/4p; ) &2]L'+ —. (10)

The validity of Eqs. (7) or (10) is questionable for
very early times, i.e. , in the vicinity of the singu-
larity at t =0, when the energy of light quanta was
comparable to the rest mass of elementary particles.
In fact, Einstein" has pointed out that there is a
difficulty at very early times because of the separate
treatment of the metric field (gravitation) and
electromagnetic fields and matter in the theory of
relativity. For large densities of field and of matter,
the field equations and even the field variables
which enter into them will have no real significance.

' E. P. Hubble, The Observationa/ Approach to Cosmology
(Clarendon Press, Oxford, 1937}."A. Einstein, The 3&axing of Relativity {Princeton Uni-
versity Press, Princeton, 1945).

However, since we do not concern ourselves with
the "beginning" this difficulty is obviated. In
addition to the fact that the relativistic energy
equation is not valid for very early times, there are
the problems of angular momentum of matter in
the universe, as well as certain physical factors
involved in the formation of the elements, which
we cannot handle satisfactorily at present.
In order to utilize the above equations, it is

necessary to specify p„",p„", and E2. While it may
appear that one need specify the matter and radia-
tion densities at the present time only, because of
Eq. (4), specifying p " and p, is equivalent to
specifying p ~ and p„, these being the densities at
a time during the period of element formation.
This time is to be specified later. (The primed
quantities should not be confused with the running
variables. ) It must be remembered that the value
of Ro employed is that calculated from the present
value of dL/dt.

III. PHYSICAL CONDITIONS DURING THE
EXPANSION

Some information is available regarding the
values of the matter and radiation densities at the
present time and, recently, studies of the relative
abundances of the elements have indicated values
for these densities prevailing very early in the
universe during the period of element formation.
Because of Eq. (4) a knowledge of p„and p,
during the element forming period together with
p„" fixes a value for p„", the present radiation
density, which is perhaps the least well-known
quantity.
In a recent paper Gamow, ' by considerations

which are different than those we have employed,
found a set of physical conditions which prevailed
during the early stages of the universe. He studied
the formation of deuterons only, by the capture of
neutrons by protons, taking into account the uni-
versal expansion. Equations for the formation of
deuterons were integrated from t =0, subject to the
condition that there were neutrons at the start (unit
concentration by weight) and that the final concen-
tration by weight of protons and deuterons was 0.5.
This solution determined a parameter o, which in
turn defined the magnitude of the matter density, "
p~ =pot
"The expression for the parameter cx, as given by Gamow

in reference 8, has been found to be incorrect {see reference 9).
%e find that a(=p eat/m, where p =p0t 8/2 is the density of
matter, v is the mean velocity of particles of mass nz, and cr is
the capture cross section of protons for neutrons) is correctly
given by

29/4~5/4Gl/4a1/4e2$
(f i i f+ I wr f)'(~"+~0")~'"po.

In this expression all the quantities have been defined by
Gamow in reference 8 except LL4~ and L(4~, the magnetic moments
in nuclear magnetons of proton and neutron, respectively, ~0,
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time for the element forming process. Equations
(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed mill reHect
these same difficulties.
In what follows we continue the discussion of the

physical conditions employed in the solutions of
the relativistic energy equation. The mean density
of matter in the universe at the present time has
been determined by Hubble" to be

T= P(32+Ga)/(3c') ]—lt—l'K
=1.52)&10'ot-'*'K. (13a)

The density of radiation, p„, may be found from
p„= (a/c') T4, or

expansion alone. However, the thermal energy
resulting from the nuclear energy production in
stars would increase this value.
Since we have p, ))p ~ at early time the energy

relation given in Eq. (6) may be integrated in a
simpler form, with the result

p„=10 "g/cm'. (12a) p„=4.48X10't ' g/cm'. (13b)
An estimate of the density of matter, p, prevailing
at the start of the period of element formation is
obtained by integration of the equations for the
neutron capture theory of the formation of the
elements. Integrations in which neutron decay is
explicitly included, but in which the expansion of
the universe is not included, yield a matter density of
5X10 ' g/cm'. Preliminary investigations of the
equations, including the universal expansion, indi-
cate that this density should be increased by a factor
roughly of the order of 100 in order that one may
correctlydetermine the relative abundance of the ele-
ments with the universal expansion taken into ac-
count. In fact, we have numerically integrated for
the light elements the complete equations (see Eqs.
(11))with an "initial" density about 100 times the
density used in obtaining solutions without the
universal expansion. v We find that the above factor
of 100 is roughly what might be required. Ac-
cordingly, we have taken

p„—10 ' g/cm'. (12b)

These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. I t can
also be shown that with the densities chosen in
Eq. (12) we have for early time

p~ = 1.70 &( 10 t ~ g/cm . (13c)
Using I and Io as already defined, we may determine
the constants A and 8 in Eq. (3).With the densities
discussed above we find A = 1 g and 8= 10' g cm.
These values of A and 8 fix the dependence of p
and p, on time through L(=l/lo). Using these
values of A and 8, we have computed I, p, p„,
and T. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in I'ig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude

ll l6
T

10 12

As discussed elsewhere, "the temperature during
the element-forming process must have been of the
order of 10'—10'"K. This temperature is limited,
on the one hand, by photo-disintegration and
thermal dissociation of nuclei and, on the other
hand, by the lack of evidence in the relative
abundance data for resonance capture of neutrons.
For purposes of simplicity we have chosen

p„—1 g/cm', (12c)
which corresponds to T=0.6X10"K at the time
when the neutron capture process became impor-
tant.
In accordance with Eq. (4), the specification of

p ", p, and p„ fixes the present density of radia-
tion, p„". In fact, we find that the value of p„"
collsis'tellt with Eq. (4) is

p„i i—10 g/clll (12d)

lO

g C1

4 -12

3 -16

2 20 r
0-28 r
-I 32

I 24

2 0 2 4 6 log t(~c) 10

-3

-4

-10

12 14 16 18

which corresponds to a temperature now of the
order of 5'K. This mean temperature for the uni-
verse is to be interpreted as the background tem-
perature which would result from the universal

FIG. 2. The time dependence of the proper distance I thedensities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p —10 30
g/cm3, p, =10 " g/cm', p =1.8X10 4 g/cm', and p„—1
g/cm3. )See Eq. (15).g
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also well suited for presentation to students who
possess a limited knowledge of the theory of
determinants and matrices.

II. PROOF OF THE THEOREM

'I'heorem. If A and 8 are hermitian matrices of
order n, A being positisie definite, the rank of the
matrix 8—X A is exactly n—k, where k is the
multiphcity of the root X; of the secular equation
)8—XA )

=0.
Let the rank of 8—le& be n r. Then—the equa-

tion

where Bl is hermitian and of order n—r. It follows that
X'(8—XA)X

(8—X;A) $=0

has r independent solutions, say $i, , $,. These
solutions can be so chosen" that they also satisfy
the orthonormality relations 81-)I

$,'A$;= 5;;.

By selecting arbitrarily n —r additional vectors,
say &,+i, , &„, so that the entire set of n vectors
is orthonormal in the sense of (2), one obtains a
non-singular matrix X=[pi, -, $ ] such that
X'AX=I. In view of this relation and the fact
that the first r columns of X satisfy (1), the matrix
X'BX has the form

'This device has been used by other authors to prove
similar theorems. See, for example, P. R. Halmos, "Finite
dimensional vector spaces, " AnnaIs of mathematics Studies
{Princeton University Press, Princeton, 1942), No. 7, pp.
125-126.

Since the roots of the equation ~X'(8 le)X~ =—0
are the same as the roots of the secular equation
and, in view of (3), li, is a root of the equation
~X'(8—L4)X~ =0 of multiplicity r at least, it
follows that r cannot exceed the multiplicity k of
the root X; for the secular equation. But if r is
less than k then ); is necessarily a root of the
equation

~
Bi—XI

~

=0. This is impossible since the
rank of X'(8—X;A)X is equal to the rank of
8—X;A, which is n—r by assumption, and by (3)
the rank of X'(8—X;A)X is also equal to the rank of
Bi X;I, which —is less than n r if ~Bi—X;I~ =—0.
It follows that r=k and the rank of 8—);A is
n—k as asserted.
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I'ro. l. The time dependence of the proper distance I., the
densities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p "—10 "
/cm', p,"=10 "g/cm', p =10 ' g/cm, and p, —1 g/cm'.
See Eq. (12).j

dx, /d&=g(p, ipm/m, i)x, ixo g(—p,p~/m;)x, xo,
j=2, 3, , J, (11c)

where xp, x&, and x; are the concentrations by
weight of neutrons, protons, and nuclei of atomic
weight 2»j»J, respectively, m; the nuclear mass,
p the density of matter, ) the neutron decay
constant, and p, the eAective neutron capture
volume swept out per second by nuclei of species j.
Gamow' has sol~ed Eqs. (11a) and (11b) numeri-
cally, taking J= 1, and thereby describing the
building up of deuterons only. In general, Eqs. (11)
have a singularity at the origin because when t~0,
p —+~ as t &. In the approximation used by
Gamow this singularity is reduced because a rela-
tion for the capture cross section of protons for
neutrons is employed which makes pip (=oivp„)
vary as t '.
It may be seen readily that Eq. (11c) can be

written in the form

dx;/ds= (p, ,/Xm, i)x, i—(PJ/Xm;)xy,j=2, 3, , J, (11d)
where

s= j p (r)xo(r)dr, (11e)
We believe that a determination of the matter

density on the basis of only the first few light
elements is likely to be in error. Our experience
with integrations required to determine the relative
abundances of all elements" indicates that these
computed abundances are critically dependent upon
the choice of matter density. Furthermore, all
formulations of the neutron capture process which
have been made thus far neglect the thermal
dissociation of nuclei, which is one of the important
competing processes during the element forming
period if elements are formed from a very early time.
In order to clarify the difficulties associated with

the singularity at t=0, we digress here for an
examination of the equations employed to describe
the formation of the elements. These equations,
recently given by the authors, ' include neutron
decay and universal expansion but do not take into
account the effects of nuclear evaporation or any
processes other than radiative capture of neutrons.
In terms of concentrations by weight, x, m, n, /p„,=
rather than particle concentrations, n, , Eqs. (6)—(8)
of reference 7 may be written as

J
dxo/« =—Xxo—Z (p;p„/m, )x,xo, (11a)

the binding energy of the virtual triplet state of the deuteron,
and the radiation density constant a=7.65)C10 '~ erg cm '
deg. . Our expression di8'ers from that originally given by
Gamow because of algebraic errors contained in his results
and because he neglected the magnetic moment factor.

and

ln general, the integrand in Eq. (11e) is singular a,t
T =0, so that one must take r p )0. This implies
the choice of an initial time at which the element
forming process started. Physically, one may not
speak of an initial time because there were com-
peting processes which became unimportant as the
neutron capture process became important. Com-
peting processes such as photo-disintegration and
nuclear evaporation fall oR' approximately expo-
nentially with time so that neutron capture would
become significant rather rapidly, say in a time of
the order of 10' seconds. The inclusion of this type
of competing process in principle could be handled
and would yield a better estimate of the relative
abundances of the elements. However, without a
better knowledge of cosmology at very early t it
does not appear to be possible to avoid the above-
mentioned difficulty. Finally, if Eqs. (11a), (11b),
and (11c) are solved simultaneously for J=4, the
remaining equations for j)4 are given by Eq.
(11d) which is a simple first-order linear diIIerential
equation with constant coeRicients. Nevertheless,
Eqs. (11a) and (11b), which are the controlling
equations for the process, are not reduced to a
simple form and must still be solved in their present
form. Because of the above difficulties we find it
necessary to introduce the concept of a starting
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In Eqs. (7) and (8), I.=l/lp, y = (8sG/3), E2
= (c'/~RO'~), and p„~ and p„" are the densities of
matter and radiation when I = 1. In order to
integrate Eq. (6) and evaluate the integration
constant, it is necessary to specify the parameter
Ro and consequently /0, which gives the units in
which Ro is measured. Examination of Eq. (6)
indicates that Ro can be determined only if it is
possible to specify Ddl/dt)/L]i=io, p, and p„at any
given time. Since L(dl/dt)/L]i=io is the expansion
rate of space as determined by Hubble" and known,
therefore, only at the present time, since p is also
known now, and if we assume that p~&p, now, one
may evaluate Ro and E&. Introducing the value
of the present expansion rate of the universe
Ddl/dt)/L]i=i0=1. 8X10 ' sec 't. aking p ~. =10—»
g/cm' and l=lo= l.0" cm, i.e. , lo is the side of a
cube containing one gram of matter now, one
obtains R0=1.7X1027(—1)& cm and Kg=3.2X10 "
sec. '. The constants appearing in Eqs. (7) and (8)
involve the present densities of matter and radia-
tion. Clearly, in utilizing Eqs. (7) or (8) one may
introduce the density values at any other time
providing one specifies a value of I. at that time
which leads to the present value of the density of
matter. For convenience we have chosen lo to be
the side of a cube containing one gram of matter at
the present time, so that L, =1 now'. Furthermore,
we have again for convenience assumed that I.=O
at k=0. While Eq. (6) has a singularity at t=0
which is physically unreasonable, we have employed
the solutions in such a manner that the singularity
is of no consequence.
For purposes of computation it is convenient to

employ an approximate form for Eq. (7) which is
valid for early t, i.e., when

LL(~ "/~" )+(&2/v~" )L]&1.
The expansion of Eq. (7) which satisfies the above
inequality is

L = (4yp, ) &L'+(p -/6y&p, "-&)L'+(8y&p; &)
X [(3vp '/4p; ) &2]L'+ —. (10)

The validity of Eqs. (7) or (10) is questionable for
very early times, i.e. , in the vicinity of the singu-
larity at t =0, when the energy of light quanta was
comparable to the rest mass of elementary particles.
In fact, Einstein" has pointed out that there is a
difficulty at very early times because of the separate
treatment of the metric field (gravitation) and
electromagnetic fields and matter in the theory of
relativity. For large densities of field and of matter,
the field equations and even the field variables
which enter into them will have no real significance.

' E. P. Hubble, The Observationa/ Approach to Cosmology
(Clarendon Press, Oxford, 1937}."A. Einstein, The 3&axing of Relativity {Princeton Uni-
versity Press, Princeton, 1945).

However, since we do not concern ourselves with
the "beginning" this difficulty is obviated. In
addition to the fact that the relativistic energy
equation is not valid for very early times, there are
the problems of angular momentum of matter in
the universe, as well as certain physical factors
involved in the formation of the elements, which
we cannot handle satisfactorily at present.
In order to utilize the above equations, it is

necessary to specify p„",p„", and E2. While it may
appear that one need specify the matter and radia-
tion densities at the present time only, because of
Eq. (4), specifying p " and p, is equivalent to
specifying p ~ and p„, these being the densities at
a time during the period of element formation.
This time is to be specified later. (The primed
quantities should not be confused with the running
variables. ) It must be remembered that the value
of Ro employed is that calculated from the present
value of dL/dt.

III. PHYSICAL CONDITIONS DURING THE
EXPANSION

Some information is available regarding the
values of the matter and radiation densities at the
present time and, recently, studies of the relative
abundances of the elements have indicated values
for these densities prevailing very early in the
universe during the period of element formation.
Because of Eq. (4) a knowledge of p„and p,
during the element forming period together with
p„" fixes a value for p„", the present radiation
density, which is perhaps the least well-known
quantity.
In a recent paper Gamow, ' by considerations

which are different than those we have employed,
found a set of physical conditions which prevailed
during the early stages of the universe. He studied
the formation of deuterons only, by the capture of
neutrons by protons, taking into account the uni-
versal expansion. Equations for the formation of
deuterons were integrated from t =0, subject to the
condition that there were neutrons at the start (unit
concentration by weight) and that the final concen-
tration by weight of protons and deuterons was 0.5.
This solution determined a parameter o, which in
turn defined the magnitude of the matter density, "
p~ =pot
"The expression for the parameter cx, as given by Gamow

in reference 8, has been found to be incorrect {see reference 9).
%e find that a(=p eat/m, where p =p0t 8/2 is the density of
matter, v is the mean velocity of particles of mass nz, and cr is
the capture cross section of protons for neutrons) is correctly
given by

29/4~5/4Gl/4a1/4e2$
(f i i f+ I wr f)'(~"+~0")~'"po.

In this expression all the quantities have been defined by
Gamow in reference 8 except LL4~ and L(4~, the magnetic moments
in nuclear magnetons of proton and neutron, respectively, ~0,
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time for the element forming process. Equations
(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed mill reHect
these same difficulties.
In what follows we continue the discussion of the

physical conditions employed in the solutions of
the relativistic energy equation. The mean density
of matter in the universe at the present time has
been determined by Hubble" to be

T= P(32+Ga)/(3c') ]—lt—l'K
=1.52)&10'ot-'*'K. (13a)

The density of radiation, p„, may be found from
p„= (a/c') T4, or

expansion alone. However, the thermal energy
resulting from the nuclear energy production in
stars would increase this value.
Since we have p, ))p ~ at early time the energy

relation given in Eq. (6) may be integrated in a
simpler form, with the result

p„=10 "g/cm'. (12a) p„=4.48X10't ' g/cm'. (13b)
An estimate of the density of matter, p, prevailing
at the start of the period of element formation is
obtained by integration of the equations for the
neutron capture theory of the formation of the
elements. Integrations in which neutron decay is
explicitly included, but in which the expansion of
the universe is not included, yield a matter density of
5X10 ' g/cm'. Preliminary investigations of the
equations, including the universal expansion, indi-
cate that this density should be increased by a factor
roughly of the order of 100 in order that one may
correctlydetermine the relative abundance of the ele-
ments with the universal expansion taken into ac-
count. In fact, we have numerically integrated for
the light elements the complete equations (see Eqs.
(11))with an "initial" density about 100 times the
density used in obtaining solutions without the
universal expansion. v We find that the above factor
of 100 is roughly what might be required. Ac-
cordingly, we have taken

p„—10 ' g/cm'. (12b)

These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. I t can
also be shown that with the densities chosen in
Eq. (12) we have for early time

p~ = 1.70 &( 10 t ~ g/cm . (13c)
Using I and Io as already defined, we may determine
the constants A and 8 in Eq. (3).With the densities
discussed above we find A = 1 g and 8= 10' g cm.
These values of A and 8 fix the dependence of p
and p, on time through L(=l/lo). Using these
values of A and 8, we have computed I, p, p„,
and T. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in I'ig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude

ll l6
T

10 12

As discussed elsewhere, "the temperature during
the element-forming process must have been of the
order of 10'—10'"K. This temperature is limited,
on the one hand, by photo-disintegration and
thermal dissociation of nuclei and, on the other
hand, by the lack of evidence in the relative
abundance data for resonance capture of neutrons.
For purposes of simplicity we have chosen

p„—1 g/cm', (12c)
which corresponds to T=0.6X10"K at the time
when the neutron capture process became impor-
tant.
In accordance with Eq. (4), the specification of

p ", p, and p„ fixes the present density of radia-
tion, p„". In fact, we find that the value of p„"
collsis'tellt with Eq. (4) is

p„i i—10 g/clll (12d)
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which corresponds to a temperature now of the
order of 5'K. This mean temperature for the uni-
verse is to be interpreted as the background tem-
perature which would result from the universal

FIG. 2. The time dependence of the proper distance I thedensities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p —10 30
g/cm3, p, =10 " g/cm', p =1.8X10 4 g/cm', and p„—1
g/cm3. )See Eq. (15).g
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(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed mill reHect
these same difficulties.
In what follows we continue the discussion of the

physical conditions employed in the solutions of
the relativistic energy equation. The mean density
of matter in the universe at the present time has
been determined by Hubble" to be
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relation given in Eq. (6) may be integrated in a
simpler form, with the result
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count. In fact, we have numerically integrated for
the light elements the complete equations (see Eqs.
(11))with an "initial" density about 100 times the
density used in obtaining solutions without the
universal expansion. v We find that the above factor
of 100 is roughly what might be required. Ac-
cordingly, we have taken
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These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. I t can
also be shown that with the densities chosen in
Eq. (12) we have for early time

p~ = 1.70 &( 10 t ~ g/cm . (13c)
Using I and Io as already defined, we may determine
the constants A and 8 in Eq. (3).With the densities
discussed above we find A = 1 g and 8= 10' g cm.
These values of A and 8 fix the dependence of p
and p, on time through L(=l/lo). Using these
values of A and 8, we have computed I, p, p„,
and T. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in I'ig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude
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also well suited for presentation to students who
possess a limited knowledge of the theory of
determinants and matrices.

II. PROOF OF THE THEOREM

'I'heorem. If A and 8 are hermitian matrices of
order n, A being positisie definite, the rank of the
matrix 8—X A is exactly n—k, where k is the
multiphcity of the root X; of the secular equation
)8—XA )

=0.
Let the rank of 8—le& be n r. Then—the equa-

tion

where Bl is hermitian and of order n—r. It follows that
X'(8—XA)X

(8—X;A) $=0

has r independent solutions, say $i, , $,. These
solutions can be so chosen" that they also satisfy
the orthonormality relations 81-)I

$,'A$;= 5;;.

By selecting arbitrarily n —r additional vectors,
say &,+i, , &„, so that the entire set of n vectors
is orthonormal in the sense of (2), one obtains a
non-singular matrix X=[pi, -, $ ] such that
X'AX=I. In view of this relation and the fact
that the first r columns of X satisfy (1), the matrix
X'BX has the form

'This device has been used by other authors to prove
similar theorems. See, for example, P. R. Halmos, "Finite
dimensional vector spaces, " AnnaIs of mathematics Studies
{Princeton University Press, Princeton, 1942), No. 7, pp.
125-126.

Since the roots of the equation ~X'(8 le)X~ =—0
are the same as the roots of the secular equation
and, in view of (3), li, is a root of the equation
~X'(8—L4)X~ =0 of multiplicity r at least, it
follows that r cannot exceed the multiplicity k of
the root X; for the secular equation. But if r is
less than k then ); is necessarily a root of the
equation

~
Bi—XI

~

=0. This is impossible since the
rank of X'(8—X;A)X is equal to the rank of
8—X;A, which is n—r by assumption, and by (3)
the rank of X'(8—X;A)X is also equal to the rank of
Bi X;I, which —is less than n r if ~Bi—X;I~ =—0.
It follows that r=k and the rank of 8—);A is
n—k as asserted.
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p .—1.78X10 ' g/cm',
p, .—1 g/cm',
p„—10-"g/crn',

(15)

p, "—10 "g/cm'.
The value obtained for p," in this case corresponds
to a present mean temperature of about 1'K. The
constants A and 8 are found to be 1 g and 10' g
cm, respectively. In Fig. 2 we have plotted the
time dependence of the quantities of interest. One
finds that the transition occurs at an earlier time
than in the previous case, namely, at 10" sec. ,
which implies that this universe would have been
in a state of free expansion for a considerably longer
time. Apparently the behavior of the model is
extremely sensitive to the choice of density condi-
tions. However, the simple type of relations for
I., p, p„, and 1 that were given previously still
apply, but with diferent constants and diAerent
regions of validity.
The time at which p =p ~ and p„=p, for both

sets of densities given in Eqs. (12) and (15) are
found from Eq. (13b) to be 6.7X10' seconds, with
a corresponding temperature of 0.59&10"K. We
have chosen p, —1 g/cm' in both cases because the
corresponding temperature is seen by independent
considerations to be that required for the element
forming process. As will be seen later, the densities
given in Eq. (15) with p —1.78X10 ' g/cm' do not
yield a satisfactory description of the size and mass
of galaxies. On the other ha.nd, as already stated a
density p —100(5X 10 ' g/cm') is apparently

of the time when the universal expansion changes
from one controlled by gravitation to one of free
escape. This transition occurs in the region of
about 10"—10'4 sec. Following this transition the
quantities I., p, p„, and T again are simple functions
of the time. The relations for large t are as follows:

I.=Em~&,
p- = (p-"/&2')t '
p.=(p" /X2')t '

and,
T=(C' P„"/aX 7)2t '.

It is to be noted that in the region of transition to
free escape the densities of matter and radiation
become equal so that, in fact, prior to the transition
the expansion is controlled chieHy by radiation and
subsequent to the transition by matter. The uni-
verse is now in the freely expanding state, and,
since the radius of curvature is imaginary, is of the
open, hyperbolic type.
In order to study how sensitive this model is to

the choice of densities, we have considered the
following additional set of density values which
satisfy Eq. (4):

II = (dL/dt)/L =L '(ypLP+A. ,)i.
For early time this reduces to

H=(2t) '

and, for late time, to
II=t-'.

(16)

(16a)

(16b)
For early and late t, the value of II does not depend
upon the choice of densities. However, in the
transition region where the functional form of II
changes, the manner of change does depend on the
existing density conditions. The universal expansion
rate is the reciprocal of the age of the universe if
measured during the period of free expansion.

IV. THE FORMATION OF GALAXIES

In his discussion of the evolution of the universe,
Gamow' suggested that galactic formation occurred
at the time when the densities of matter and radia-
tion were equal. He assumes that the Jeans'
criterion of gravitational instability may be applied
at this time and as a consequence derives expres-
sions for the galactic diameter and mass. "We have
carried out calculations' based on Gamow's formu-
lation using the corrected expressions for D and 3f
given in footnote 13. We find that p„=p„when
$,—0.86&(10" sec. , which is greater than the age
of the universe. This arises out of the fact that, in
addition to the dif6culties with density determina-
tions mentioned earlier, there is involved an extra-
"Using the corrected form of n described in footnote 12,

we find for the galactic diameter, D, and mass, M; the follow-
ing corrected expressions according to Gamow's formulation:

iow'e'k

S8f8~7«.a1~2&~~=P~D 23/434/467/4~7/4~74/4~7~7/4( I » I + I» I ) (""+44'")"".
where t, is the time at which the densities of matter and
radiation were equal.

enough to overcome the e6ect of the universal
expansion and give the correct relative abundances
of the elements. Thus, on the basis of these con-
siderations one is led to the conclusion that when
t=6.70X 10' sec. , and p, =1 g/cm' we have

5.0X10 ' g/cm'~p .~1.8X10 4 g/cm'.
While it is not particularly germane to the study

reported in this paper, it is interesting to note that
one may find the dependence of the universal
expansion rate on the time in this type of model ~

This rate is the percentage change in proper dis-
tance per unit time determined by Hubble'0 from
the red-shift in spectra of nebulae, and is given in
V=Hd, where V is the velocity of recession of a
nebula at a distance d. In our notation, we have,
in general,
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BBN Theory

Conditions in the Early Universe:

T >
∼ 1 MeV

ρ = π2

30(2 + 7
2 + 7

4Nν)T 4

η = nB/nγ ∼ 10−10

β-Equilibrium maintained by
weak interactions

Freeze-out at ∼ 1 MeV determined by the
competition of expansion rate H ∼ T 2/Mp and
the weak interaction rate Γ ∼ G2

FT 5

n + e+
↔ p + ν̄e

n + νe ↔ p + e−

n ↔ p + e− + ν̄e

At freezeout n/p fixed modulo free
neutron decay, (n/p) ≃ 1/6 → 1/7
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Nucleosynthesis Delayed
(Deuterium Bottleneck)

p + n →D+γ Γp ∼ nBσ

p + n ←D+γ Γd ∼ nγσe−EB/T

Nucleosynthesis begins when Γp ∼ Γd

nγ

nB
e−EB/T ∼ 1 @ T ∼ 0.1 MeV

All neutrons → 4He

with mass fraction

Yp =
2(n/p)

1 + (n/p)
≃ 25%

Remainder:

D, 3He ∼ 10−5 and 7Li ∼ 10−10 by number
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BBN could not explain the
abundances (or patterns) of 
all the elements.

⇒ growth of stellar nucleosynthesis

But, 
Questions persisted:

25% (by mass) of 4He ?
D?

Resurgence:
BBN could successfully account
for the abundance of 

D, 3He, 4He, 7Li.
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modifies this approach, keeping the same exponential dependence, but changes from a power law

in T 1/3

9 to a power law in T9: exp(a′/T 1/3

9 )(
∑

j c′jT
j
9 ). The main reason for the form of their fit is

to get fast convergence to the numerical data. In some cases (e.g. 3He(d, n)4He and 7Li(p,α)4He)

additional factors are used to improve the fit to the numerical results.

Table 1: Key Nuclear Reactions for BBN

Source Reactions

NACRE d(p, γ)3He

d(d, n)3He

d(d, p)t

t(d, n)4He

t(α, γ)7Li
3He(α, γ)7Be
7Li(p,α)4He

SKM p(n, γ)d
3He(d, p)4He
7Be(n, p)7Li

This work 3He(n, p)t

PDG τn

As noted above, some of the rates are not provided by NACRE. In these cases, the SKM rates

as indicated in Table 1 are used. One of these, 7Be(n, p)7Li, is a n-capture reaction for which a

large amount of data is available. The deuteron-induced reaction (3He(d, p)4He), is fit as a charged

particle reaction using the Caughlan & Fowler prescription, as discussed in the previous paragraph.

Several reactions deserve special mention. As noted by SKM and emphasized recently by

Nollett & Burles (2000), the p(n, γ)d reaction suffers from a lack of data in the BBN energy

range. Also, p(n, γ)d has only 4 data points (not available when SKM did their study) in the

relevant energy range ! 1 MeV. Fortunately, this reaction is well-described theoretically. Here we

follow both SKM and Nollett & Burles, by adopting the theoretical cross sections of Hale et al.

(1991), which provide an excellent fit to the four available data points by Suzuki (1995) and Nagai

(1997). Nevertheless, despite the present agreement between theory and data, the importance of

this reaction–which controls the onset of nucleosynthesis–demands that the theoretical cross section

fit be further tested by accurate experiment. We urge further investigation of this reaction.

Since SKM, Brune et al. (1999) have added new and very precise data for 3He(n, p)t (see Figure

1a).1 This has greatly reduced the uncertainty in this reaction. In order to use these data, we have

refit the R factor in the manner of SKM and Brune et al., using a third order polynomial in v and

1Note that in all figures having logarithmic vertical scales, errors have been properly propagated to reflect the log

nature of the plot.

(a)

(b)

(c)
(d)

NACRE
Cyburt, Fields, KAO

Nollett & Burles
Coc et al.

(See below)
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• Production of the Light Elements:  D, 3He, 4He, 7Li

• 4He observed in extragalctic HII regions: 
         abundance by mass = 25%

• 7Li observed in the atmospheres of dwarf halo stars: 

         abundance  by number = 10-10

• D observed in quasar absorption systems (and locally): 
         abundance by number = 3 x 10-5

• 3He in solar wind, in meteorites, and in the ISM: 

         abundance by number = 10-5

Observations



D/H
• All Observed D is Primordial!

• Observed in the ISM and inferred from 
meteoritic samples (also HD in Jupiter)

• D/H observed in Quasar Absorption systems

Cooke et al.

primordial deuterium at one percent 13

Figure 6. Our sample of seven high precision D/H measures is shown (symbols with error bars); the green symbol represents the new measure
that we report here. The weighted mean value of these seven measures is shown by the red dashed and dotted lines, which represent the 68
and 95 per cent confidence levels, respectively. The left and right panels show the dependence of D/H on the oxygen abundance and neutral
hydrogen column density, respectively. Assuming the Standard Model of cosmology and particle physics, the right vertical axis of each panel
shows the conversion from D/H to the universal baryon density. This conversion uses the Marcucci et al. (2016) theoretical determination of
the d(p, �)3He cross-section. The dark and light shaded bands correspond to the 68 and 95 per cent confidence bounds on the baryon density
derived from the CMB (Planck Collaboration et al. 2015).

Table 3. precision d/h measures considered in this paper

QSO zem zabs log10 N(H i)/cm�2 [O/H]a log10 N(D i)/N(H i)

HS 0105+1619 2.652 2.53651 19.426 ± 0.006 �1.771 ± 0.021 �4.589 ± 0.026

Q0913+072 2.785 2.61829 20.312 ± 0.008 �2.416 ± 0.011 �4.597 ± 0.018

Q1243+307 2.558 2.52564 19.761 ± 0.026 �2.769 ± 0.028 �4.622 ± 0.015

SDSS J1358+0349 2.894 2.85305 20.524 ± 0.006 �2.804 ± 0.015 �4.582 ± 0.012

SDSS J1358+6522 3.173 3.06726 20.495 ± 0.008 �2.335 ± 0.022 �4.588 ± 0.012

SDSS J1419+0829 3.030 3.04973 20.392 ± 0.003 �1.922 ± 0.010 �4.601 ± 0.009

SDSS J1558�0031 2.823 2.70242 20.75 ± 0.03 �1.650 ± 0.040 �4.619 ± 0.026
aWe adopt the solar value log10 (O/H) + 12 = 8.69 (Asplund et al. 2009).

or, expressed as a linear quantity:

105 (D/H)P = 2.527 ± 0.030 (10)

This value corresponds to a ⇠ 1 per cent determination of the
primordial deuterium abundance, and is shown in Figure 6
by the dashed and dotted horizontal lines to represent the 68
and 95 per cent confidence regions, respectively. Our deter-
mination of the primordial deuterium abundance quoted here
has not changed much from our previous estimate in Cooke
et al. (2016); as discussed above, the new value is in mutual
agreement with the previous six measures and is of compa-
rable precision. We therefore conclude that the primordial
deuterium abundance quoted here is robust.

5.2. Testing the Standard Model

In order to compare this measurement to the latest Planck
CMB results, we must first convert our estimate of (D/H)P to
the baryon-to-photon ratio, ⌘. To do this, we use the BBN
calculations described by Cooke et al. (2016, see also, Nol-
lett & Burles 2000; Nollett & Holder 2011), assuming the
Marcucci et al. (2016) d(p, �)3He reaction rate. For the case

of the Standard Model, we deduce a baryon-to-photon ratio
of

1010 ⌘ ⌘ ⌘10 = 5.931 ± 0.051 (11)

which includes the uncertainty of the nuclear data that are
used as input to the BBN calculations.

We can now convert this value of the baryon-to-photon ra-
tio into an estimate of the cosmic density of baryons using
the formula ⌘10 = (273.78± 0.18)⇥⌦B,0 h2 (Steigman 2006)
which, for the Standard Model, gives the value:

100⌦B,0 h2(BBN) = 2.166 ± 0.015 ± 0.011 (12)

where the first error term includes the uncertainty in the mea-
surement and analysis, and the second error term provides the
uncertainty in the BBN calculations.

The BBN inferred value of the cosmic baryon density is
somewhat lower than the Planck value, 100⌦B,0 h2(CMB) =
2.226 ± 0.023 (Planck Collaboration et al. 2015, see gray



Figure 3: Optical spectrum of quasar 1937–1009, which shows the best example of
primordial D/H. The top spectrum, from the Kast spectrograph on the 3-m telescope at
Lick observatory, is of low spectral resolution, and high signal to noise. The continuum
emission, from the accretion disk surrounding the black hole at the center of the quasar,
is at about 6 flux units. The emission lines showing more flux (near 4950, 5820, 5940,
6230, 6700 & 7420 Å) arise in gas near the quasar. The absorptoin lines, showing less
flux, nearly all arise in gas which is well separated from, and unrelated to the quasar. The
numerous absorption lines at 4200 – 5800 Å are H I Lyα from the gas in the intergalactic
medium. This region of the spectrun is called the Lyα forest. This gas fills the volume
of the intergalactic medium, and the absorption lines arise from small, factor of a few,
fluctuations in the density of the gas on scales of a few hundred kpc. The Lyα lines were
all created by absorption of photons with wavelengths of 1216Å. They appear at a range
of observed wavelengths because they have different redshifts. Hence Lyα absorption at
5800Å is near the QSO, while that at 5000Å is nearer to us. The abrupt drop in flux
at 4180 Å is caused by H I Lyman continuum absorption in the absorber at z = 3.572.
Photons now at < 4180 Å had more than 13.6 eV when they passed though the absorber,
and they ionized its H I. The 1% residual flux in this Lyman continuum region has been
measured in spectra of higher signal to noise (Burles & Tytler 1997) and gives the H I
column density, expressed as H I atoms per cm−2 through the absorbing gas. The lower
plot shows a portion of a spectrum with much higher resolution taken with the HIRES
spectrograph on the Keck-1 telescope. We mark the Lyα absorption lines of H I and D
from the same gas. The column density of D is measured from this spectrum. Dividing
these two column densities we find D/H = 3.3 ± 0.3 × 10−5 (95% confidence), which is
believed to be the primoridal value, and using SBBN predictions, this gives the most
accurate measurements of η and Ωb.

61

Tytler, O’Meara, Suzuki, Lubin



Updated
D/H abundances in
Quasar absorption 

systems 

BBN Prediction:
 105 D/H = 2.506 ± 0.083

Obs Average:
105 D/H = 2.55 ± 0.03

-5

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

1.5 2 2.5 3 3.5 4

L
o
g
(D
/H
)

Z



Updated
D/H abundances in
Quasar absorption 

systems 

BBN Prediction:
 105 D/H = 2.506 ± 0.083

Obs Average:
105 D/H = 2.55 ± 0.03

-5

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

1.5 2 2.5 3 3.5 4

L
o
g
(D
/H
)

Z

-5

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

1.5 2 2.5 3 3.5 4

L
o
g
(D
/H
)

Z



Fields, Olive, Yeh, Young

0.23

0.24

0.25

0.26

Y
p

10�5

10�4

10�3
3
H

e/
H

D
/
H

10�10 10�9

baryon-to-photon ratio ⌘ = nb/n�

10�10

10�9

7
L
i/

H

10�2
baryon density ⌦bh2



Fields, Olive, Yeh, Young

0.23

0.24

0.25

0.26

Y
p

10�5

10�4

10�3
3
H

e/
H

D
/
H

10�10 10�9

baryon-to-photon ratio ⌘ = nb/n�

10�10

10�9

7
L
i/

H

10�2
baryon density ⌦bh2



4He
Measured in low metallicity extragalactic HII 

regions (~100)  together with O/H and N/H

YP = Y(O/H → 0)
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Aver, Berg, Hirschauer, Olive, 
Pogge, Rogers,
Salzer, Skillmanprior: YP = .2453 ± 0.0034

Most recent addition: AGC 198691 (2021)



4He Prediction: 
0.2467 ± 0.0002

Data: Regression: 
0.2448 ± 0.0033
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Li/H
Measured in low metallicity dwarf halo stars 
(over 100 observed)
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Possible sources for the discrepancy

• Nuclear Rates/Resonant reactions

• Stellar parameters

• Stellar Depletion

• Decaying Particles 
• Axion Cooling
• Variable Constants



Arguments against stellar depletion

• Lack of dispersion in the plateau

• Observation of 6Li
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Fig. 15. A unified view of A(Li) vs. [Fe/H] from some studies for which
a common temperature scale can be assumed. Blue circles, Asplund et
al. (2006) data, red triangles, Aoki et al. (2009) data, magenta squares,
CS 22876–032 from González Hernández et al. (2008), filled symbol
primary star, open symbol secondary star. Black diamonds, this work,
BA temperature scale. Dot-dashed gray line, best linear fit to Asplund
et al. (2006) data, continuous dark gray line, best fit to our data. Typical
error bars for our data are displayed.

three works)8. The best linear fit to our data is shown as a dark
gray solid line, while the best fit to Asplund et al. (2006) data
(A(Li)=2.409+ 0.103[Fe/H]) is shown by a dot-dashed gray line.
The Asplund et al. (2006) Li abundances are increased here by
0.04 dex to account for the known offset already mentioned in
Sect. 7.6, and their metallicty is decreased by 0.2 dex to corre-
spond to the metallicity-scale offset detected by Bonifacio et al.
(2007). It is now even more evident that the Spite plateau does
not exist anymore at the lowest metallicity, and is replaced by an
increased spread of abundances, apparently covering a roughly
triangular region ending quite sharply at the plateau level. This
region appears here to be populated in a remarkably even man-
ner; at any probed metallicity some star remains at, or very close
to, the Spite plateau level, but many do not. The rather different
slopes of the best-fit relations in Asplund et al. (2006) and in
this work appear to be the obvious consequence of fitting two
subsamples covering different metallicity regimes. This could
provide also an explanation for the numerous claims, starting
from Ryan et al. (1999), of a thin, but tilted Spite plateau. From
this view, the difference was produced simply because the tail of
these samples had been falling in the low-metallicity “overde-
pletion zone” as we have been able to discern more clearly.

We are not aware of any theoretical explanation of this be-
havior. After the measurements of the fluctuations of the CMB
made it clear that there is a “cosmological lithium problem”, i.e.,
the Li predicted by SBBN and the measured baryonic density is
too high with respect to the Spite plateau (by about 0.6 dex for
our sample), there have been many theoretical attempts to pro-
vide Li-depletion mechanisms that would reduce the primordial
Li to the Spite plateau value in a uniform way. Our observations
now place anadditional constraint on these models – below a
metallicity of about [Fe/H] = −2.5, they should cause a disper-
sion in Li abundances and an overall lowering of A(Li).

If Li depletion from the WMAP-prescribed level were
to happen in the stellar envelopes of very metal-poor stars,

8 González Hernández et al. (2008) derived Teff from photometry and
isochrones, but a cross-check with Hα profiles computed in 1D with
Barklem et al. (2000a) broadening confirmed the result.

the mechanism would have to be remarkably metallicity in-
sensitive to account for the thin, flat plateau observed be-
tween [Fe/H]=−2.5 and −1. And yet, the same phenomenon
must become sharply metallicity sensitive around and below
[Fe/H]=−2.5, i.e., precisely where metallicity effects on the at-
mospheric structure are expected to become vanishing small.

We are tempted to imagine that two different mechanisms
may need to be invoked to explain the production of the Spite
plateau for stars with [Fe/H] > −2.5, and of the low-metallicity
dispersion for stars with [Fe/H] < −2.5. One could envision such
a two-step process as follows:

1. Metal-poor halo stars are always formed at the Spite plateau
level, regardless of their metallicity.Whether the plateau rep-
resents the cosmological Li abundance or is the result of
some primordial uniform depletion taking place before the
star formation phase is immaterial in this context.

2. A second phenomenon, possibly related to atmospheric dif-
fusion, becomes active around [Fe/H]=−2.5 and below, de-
pleting Li further in the atmosphere of EMP stars. This phe-
nomenon, aside from the metallicity sensitivity, would ex-
hibit different star-to-star efficiency, being possibly depen-
dent on additional parameters, such as stellar rotation or Teff .
Its efficiency must in any case be higher for more metal-poor
stars.

In this scenario, the “primordial” plateau would be preserved
above [Fe/H]∼ −2.5, but below that metallicity, a systematic
“leakage” of stars towards lower A(Li) would take place, more
effectively for more metal-poor stars, but naturally scattered due
to the sensitivity to parameters other than [Fe/H]. This scheme
would have a number of advantages. First of all, it would natu-
rally explain our observations, “mimicking” a slope in A(Li) ver-
sus [Fe/H], but with increased scatter at low [Fe/H]. It would also
explain why, while the scatter in A(Li) increases at low metallic-
ities, not a single star in this metallicity regime has been found
to lie above the Spite plateau level. It would then be consistent
with a small number of stars remaining close to the plateau at
any metallicity (e.g., CS 22876–032 A, González Hernández et
al., 2008, filled magenta square in Fig. 15); in these objects,
the depletion process would be somehow inhibited. Finally, at-
tributing the extra depletion to atmospheric diffusion / settling
would not require a physical “conspiracy” capable of producing
exactly the same depletion level regardless of metallicity, stel-
lar rotation, gravity, or effective temperature, as is often invoked
when diffusion is used to explain the Spite plateau.

The nature of what we refer to above as the “second phe-
nomenon”, the one responsible for the departures from the Spite
plateau below [Fe/H] = −2.5, is perhaps the most intriguing.
Above, we have proposed some kind of photospheric settling
mechanism, but one could as well envision a chemical evolution
scenario, on the basis of some gas pre-processing with Li deple-
tion (à la Piau et al. 2006) – while it may not be able to account
for the entire WMAP-Spite plateau discrepancy, this mechanism
could easily account for the mild (0.2-0.4 dex) departure from
the plateau observed at lower metallicities. Moreover, this mech-
anism would naturally produce a spread of abundances as a con-
sequence of the local level of gas pre-processing.

There are hints that the recently discovered ultra-faint dwarf
galaxies (uFdg) might have been the source of the bulk of the
EMP stars now found in the halo of the Milky Way (Tolstoy et
al., 2009, and references therein). If this were indeed the case, a
sizeable fraction of our sample could have formed in uFdg sys-
tems, possibly more so for the most metal-poor objects. It has
been suggested (Komiya et al., 2009) that the paucity of stars
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time was sufficient only for giving abundances of a few el-
ements. The star was independently recovered as a Mg-rich
star by Li et al. (2014), who analysed the SDSS DR9 spec-
tra. Their temperature for the star is higher by 230 K and
consequently their metallicity is higher ([Fe/H]=–2.83). In
the UVES spectrum of SDSS J1349+1407 we identified six
Mg i lines in the blue spectrum (382.9, 383.2, 383.8, 405.7,
416.7, 470.2 nm). We fitted the line profiles and we derived
A(Mg) = 5.30 ± 0.16 and by removing the line which is in
the wing of a Balmer line, we derive A(Mg) = 5.36 ± 0.11.
The star is also enhanced in Na, with [Na/Fe]=+0.86.

– SDSS J1442–0015. We compared our spectrum with the X-
Shooter spectrum of Caffau et al. (2013a). The metallicities
from the analysis of the two spectra are in good agreement
within errors of less than 1σ. The Mg abundances are in rea-
sonable agreement with 1.5σ errors. The situation is slightly
worse for the Ca abundance; the abundances derived from
the Ca i 422.67 nm resonance line from the two spectra are
consistent to within 1.8σ, i.e. 0.7 dex. As usual, this is dis-
crepant with the Ca ii IR triplet lines, measured in the X-
Shooter spectrum. This example is a recommendation not to
overinterpret the abundances that rely on a single, weak line.
It is important to note that both here and in the study of
Caffau et al. (2013a)
we adopted the effective temperature derived by fitting the
wings of Hα, which is considerably lower than the tempera-
ture implied by the g − z colour (6161 K).

– SDSS J1507+0051. The X-Shooter spectrum was analysed
by Caffau et al. (2013b). Both the metallicity and the Mg
abundance of the two analyses are in agreement within less
than 1σ. Instead, we have a strong discrepancy
for the abundances of Ca derived from Ca ii lines. In the
UVES spectrum we detect the 370.6024 nm line, while in
the X-Shooter spectrum, we relied on the IR triplet lines.
This discrepancy needs to be further investigated.

4. Results and discussion

The main result of this investigation is the confirmation, based
on higher resolution spectra, of the very low metallicities that we
derived for these stars from the analysis of the X-Shooter spec-
tra. Two stars have [Fe/H] below −4.3, three stars around −4.0,
and two stars around −3.5. These numbers confirm the high effi-
ciency of the TOPoS strategy for target selection. The five stars
with [Fe/H]≤ −4.0 discussed in this paper, SDSS J1742+2531
( [Fe/H]=−4.80, Bonifacio et al. 2015 ) and SDSS J0929+0238
([Fe/H]=−4.97, Caffau et al. 2016) are the most iron-poor stars
we found in the course of the TOPoS project and they are all
strongly C-enhanced. To date, among the stars with [Fe/H]≤
−4.5 the only ‘non C-enhanced star’ found is SDSS J1029+1729
(Caffau et al. 2011b, 2012).

4.1. Carbon abundances

It is interesting to note that all the C-enhanced stars that we
have found belong indeed to the low-carbon band discussed by
Bonifacio et al. (2015), as illustrated in Fig. 2. These stars do not
seem to be enhanced in s-process elements and we suggest that
they are indeed CEMP-no stars. This view is supported also by
the recent study of Hansen et al. (2016) who analysed a sample
of 27 metal-poor stars and found that 20 of them are CEMP, 3
of which are CEMP-no stars that belong to the low-carbon band.

Fig. 3. Lithium abundance in unevolved extremely metal-poor
stars. The different symbols refer to different carbon abundances.
The filled hexagons refer to carbon normal stars. CEMP stars of
the low- and high-carbon bands are shown as star symbols and
crossed squares, respectively. Measurements and upper limits of
the programme stars are shown in red. Measurements and upper
limits from our group’s previous papers (Bonifacio et al. 2015;
Caffau et al. 2016) are shown in blue. Black symbols are stars
for which metallicity, lithium abundance, and carbon abundance
are taken from the literature (Norris et al. 1997; Lucatello et al.
2003; Sivarani et al. 2004; Ivans et al. 2005; Sivarani et al. 2006;
Frebel et al. 2007, 2008; Thompson et al. 2008; Aoki et al. 2008;
Sbordone et al. 2010; Behara et al. 2010; Caffau et al. 2012;
Carollo et al. 2012; Masseron et al. 2012; Aoki et al. 2013; Ito
et al. 2013; Carollo et al. 2013; Spite et al. 2013; Roederer et al.
2014; Aoki 2015; Bonifacio et al. 2012; Li et al. 2015b; Hansen
et al. 2014; Caffau et al. 2016; Placco et al. 2016; Matsuno et al.
2017). The two components of the binary system CS 22876-32
(González Hernández et al. 2008) are shown as black crosses.
The green dashed line is the level of the Spite plateau as deter-
mined by Sbordone et al. (2010).

We suggest here that a useful classification of metal-poor stars
can be made using only their C abundance without any refer-
ence to their abundance of n-capture elements. This is related
to the fact that, for unevolved stars, it is very difficult to secure
data quality high enough to derive measurements or significant
upper limits for the heavy elements. Our proposed classification
scheme is as follows:

– ‘carbon normal’: for [Fe/H]≥ −4 [C/Fe]< 1.0, for [Fe/H]<
−4 A(C)< 5.5;

– low-carbon band CEMP stars: stars that do not fulfil the car-
bon normal criterion and have A(C)≤ 7.6;

– high-carbon band CEMP stars: stars that do not fulfil the car-
bon normal criterion and have A(C)> 7.6.

This classification is qualitatively similar to that proposed by
Yoon et al. (2016), except that their Group II is partly included
in our low-carbon band and mostly in our carbon normal stars,
their Group I is by and large coincident to our high-carbon band,
except for the stars with the lowest C abundances in their Group
I, which we assign to the low-carbon band.
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Figure 2. Upper panel: Li doublet of J0023+0307 rebinned
to 0.035Å/pixel (1.6 km s�1/pixel) together with the best fit
model (A(Li)= 2.02, � = 0.05) and the fit residual, providing
a S/N⇠ 130. We also show for comparison two additional
synthetic spectra at about 3-� from the best fit.

Lower panel: Li abundance, A(Li), versus metallicity, [Fe/H],
of J0023+0307 compared with other dwarf - turn-o↵ stars
(log g � 3.7) with Li abundance values from Bonifacio
et al. (2018) and references therein. Blue filled circles con-
nected with a solid line indicates the spectroscopic bina-
ries in González Hernández et al. (2008); Aoki et al. (2012).
The Lithium plateau (also called Spite Plateau) reference is
shown as solid line at a level of A(Li) = 2.20 dex. Blue dashed
line represents the primordial lithium value (A(Li)⇠2.7) from
WMAP (Spergel et al. 2003).

mono-enriched area of the [Mg/C] vs [Fe/H] diagram
presented in Hartwig et al. (2018). SDSS J1035+0641
(with a metallicity of [Fe/H]< �5.2) discovered by Boni-
facio et al. (2015) also presents a high probability of
being a second generation mono-enriched star (Hartwig
et al. 2019).
Bonifacio et al. (2018) has recently detected lithium

(A(Li)= 1.9) in J1035+0641 close to the Lithium
Plateau. J0023+0307 with Li abundance of A(Li)= 2.02
surprisingly nearly recovers the same level of the
Lithium Plateau at about 1 dex less iron content. The
presence of lithium in this extremely iron-poor star at
[Fe/H]. �6 reinforces the production of lithium at the
Big Bang, and places a stringent constraint to any the-
ory aiming at explaining the cosmological Li problem.
The fact that no star in this large metallicity regime
(�6 <[Fe/H]< �2.5) has been detected to show a Li
abundance between that inferred from SBBN and the
Li plateau, makes this upper boundary of Li abundance
(or extended Li plateau) at low metallicities di�cult to
explain by destruction in the stars, and may support a
lower primordial Li production, driven by non-standard
nucleosynthesis processes.
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function
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Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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The CMB-BBN likelihoods in Figure 8 are summarized by the predicted abundances

Yp = 0.2467 ± 0.0002 (0.2467) (22)

D/H = (2.506 ± 0.083)⇥ 10�5 (2.505 ⇥ 10�5) (23)
3He/H = (10.45 ± 0.87)⇥ 10�6 (10.45 ⇥ 10�6) (24)

7Li/H = (4.96 ± 0.70)⇥ 10�10 (4.95 ⇥ 10�10) (25)

where the central values give the mean, and the error gives the 1s variance. The final
number in parentheses gives the value at the peak of the distribution.

For comparison, in Figure 9, we also show the same likelihood functions for each of
the light elements, but instead, in our Monte Carlo, choose values of the neutron mean life
from the ideogram in Figure 3b, rather than the Gaussian distribution. As one can see, apart
from the feature on the high side of the BBN 4He distribution (purple shaded likelihood in
panel a), the results are very similar, which emphasizes the lack of sensitivity to the current
neutron mean life given the experimental uncertainties, even with the dispersion among
recent measurements.
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Figure 9. As in Figure 8, where the neutron mean life is selected from the ideogram in Figure 3b
rather than the Gaussian distribution.

Yeh, Olive, Fields



BBN and the CMB

Fields, Olive, Yeh, Young

Nν = 3

CMB only determination
of η and YP

3σ BBN Prediction

5.8 6.0 6.2 6.4
Baryon-to-photon ratio ⌘10 = nb/n� ⇥ 1010

0.20

0.25

0.30

Y
p

—– 68.27%

—– 95.45%

—– 99.73%



BBN and the CMB

Convolved Likelihoods

Determination of η

Fields, Olive, Yeh, Young

5.5 6.0 6.5 7.0

Baryon-to-photon ratio ⌘10 = nb/n� ⇥ 1010

0.0

0.2

0.4

0.6

0.8

1.0

L
ik

el
ih

o
o
d

BBN + Yp

BBN + D

BBN + CMB

BBN + CMB + D

CMB � only

N⌫ = 3.0

J
C
A
P
0
3
(
2
0
2
0
)
0
1
0Figure 4. Light element abundance likelihood functions. Shown are likelihoods for each of the light

nuclides, normalized to show a maximum value of 1. The solid-lined, dark-shaded (purple) curves are
the BBN+CMB predictions, based on Planck inputs as discussed in the text. The dashed-lined, light-
shaded (yellow) curves show astronomical measurements of the primordial abundances, for all but
3He where reliable primordial abundance measures do not exist. For 4He, the dotted-lined, medium-
shaded (cyan) curve shows the independent CMB determination of 4He. We see excellent agreement
for D/H, good agreement for 4He, and strong discrepancy in 7Li constitutes the persistent lithium
problem.

where the central values give the mean, and the error gives the 1� variance. The final number
in parentheses gives the value at the peak of the distribution.

We compare our results to previous results in CFOY [2] and ref. [46] in table 3. The
values in eqs. (5.3)–(5.6) di↵er slightly from those given in table 3 as the latter were evaluated
using central values of all inputs at a single value of ⌘10 = 6.129.

There are additional ways of integrating over our various likelihood functions. We can
for example, simply marginalize the CMB likelihood function over YP to obtain a CMB-only
likelihood function of ⌘

LCMB(⌘) /
Z

LCMB(⌘, Yp) dYp . (5.7)

This is plotted in figure 5 as the red dot-dashed curve. Its mean and standard deviation are
given in table 4. Also given in table 4 is the position of the peak of the distribution. Its
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Table 3. Comparison of BBN Results.

Figure 5. Baryon-to-photon ratio determinations for di↵erent combinations of light element and
CMB data. We show BBN-only predictions based on D (dotted purple) and Yp (dashed magenta),
and CMB-only predictions in dot-dashed red. BBN+CMB (green dot-long dashed) uses the Planck
Yp data, while the tightest combined constraints, BBN+CMB+D (solid orange) further include the
observed D/H.

di↵erence from the mean value is a measure of the mode skewness of the distribution. It is
always very small.

The likelihood function LCMB(⌘) uses no information from BBN. In particular it does
not use the BBN relation between ⌘ and Yp. This relation can be folded in by computing

LCMB�BBN(⌘) /
Z

LCMB(⌘, Yp) LBBN(⌘; Yp) dYp , (5.8)

which is shown in figure 5 by the green dot-long dashed curve.
As is well known and seen in figure 2, there is a weak dependence of Yp on ⌘. As a

result, though one can form a likelihood function from BBN and Yp alone,

LBBN�OBS(⌘) /
Z

LBBN(⌘; Xi) LOBS(Xi) dXi , (5.9)

with Xi = Yp, it is not very instructive. It is shown in figure 5 by the very broad magenta
dashed curve. In contrast, D/H is a very good baryometer, and substituting Xi = D/H in
eq. (5.9) yields the purple dotted curve in figure 5. Finally, we can convolve all three primary
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Figure 5. Baryon-to-photon ratio determinations for di↵erent combinations of light element and
CMB data. We show BBN-only predictions based on D (dotted purple) and Yp (dashed magenta),
and CMB-only predictions in dot-dashed red. BBN+CMB (green dot-long dashed) uses the Planck
Yp data, while the tightest combined constraints, BBN+CMB+D (solid orange) further include the
observed D/H.

di↵erence from the mean value is a measure of the mode skewness of the distribution. It is
always very small.

The likelihood function LCMB(⌘) uses no information from BBN. In particular it does
not use the BBN relation between ⌘ and Yp. This relation can be folded in by computing

LCMB�BBN(⌘) /
Z

LCMB(⌘, Yp) LBBN(⌘; Yp) dYp , (5.8)

which is shown in figure 5 by the green dot-long dashed curve.
As is well known and seen in figure 2, there is a weak dependence of Yp on ⌘. As a

result, though one can form a likelihood function from BBN and Yp alone,

LBBN�OBS(⌘) /
Z

LBBN(⌘; Xi) LOBS(Xi) dXi , (5.9)

with Xi = Yp, it is not very instructive. It is shown in figure 5 by the very broad magenta
dashed curve. In contrast, D/H is a very good baryometer, and substituting Xi = D/H in
eq. (5.9) yields the purple dotted curve in figure 5. Finally, we can convolve all three primary
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Constraints Used mean ⌘10 peak ⌘10

CMB-only 6.104 ± 0.058 6.104

BBN+Yp 6.741+1.220
�3.524 4.920

BBN+D 6.148 ± 0.191 6.145

BBN+Yp+D 6.143 ± 0.190 6.140

CMB+BBN 6.128 ± 0.040 6.128

CMB+BBN+Yp 6.128 ± 0.040 6.128

CMB+BBN+D 6.129 ± 0.039 6.129

CMB+BBN+Yp+D 6.129 ± 0.039 6.129

Table 4. Constraints on the baryon-to-photon ratio, using di↵erent combinations of observational
constraints. We have marginalized over Yp to create 1D ⌘ likelihood distributions. Given are both
the mean (and its uncertainty) as well as the value of ⌘ at the peak of the distribution.

likelihood functions as

LCMB�BBN�OBS(⌘) /
Z

LCMB(⌘, Yp)LBBN(⌘; Xi) LOBS(Xi)
Y

i

dXi , (5.10)

which is shown as the solid orange curve in figure 5. With the exception of LBBN�OBS(⌘)
using Yp, which carries little information, all of the likelihoods are remarkably consistent
which is another reflection of the agreement between the BBN prediction of D/H at the
CMB-determined value of ⌘ and the observationally-determined value of D/H. The mean,
standard deviations, and peaks of all of these likelihood functions are summarized in table 4.

As one can see from table 4, the BBN + D likelihood gives ⌘10 ' 6.15 and is slightly
lower than that found in CFOY (⌘10 ' 6.18). This is primarily due to the very slight shift
in the observational value of D/H used. With all other factors fixed the change in ⌘ can be
estimated from the sensitivities discussed earlier and we expect �(D/H)/(D/H) ' �1.6 �⌘/⌘.
In contrast, all of the CMB+BBN determinations of ⌘10 are increased from ' 6.10 (in 2015)
to roughly 6.13 presently. This tendency can be understood using figure 6 which shows
contours of the 2-D likelihood LCMB(⌘, Yp) for fixed N⌫ = 3. Also shown is the BBN relation
for Yp(⌘) which appears as a nearly horizontal line over this range in ⌘. Thus small changes in
⌘ barely a↵ect the peak of the likelihood function (shaded purple) in figure 4. In contrast, the
CMB contours show a significantly stronger and positive correlation between the CMB-only
determined baryon density and helium abundance. Now, as noted above, one of the more
noticeable changes between Planck 2015 and 2018 was the CMB-only determination of Yp.
Using Planck 2015, the peak of the CMB-only distribution of Yp was high compared to the
observational peak and as a result ⌘ was found to be lower when BBN was included (relative
to the CMB-only value of ⌘). Currently, as one sees in figure 4, the CMB-only distribution
for Yp sits below the observational value and as a result requires a higher value of ⌘ when
the distributions are convolved. This is precisely what we find. Our final combined value for
the baryon-to-photon ratio, is therefore

⌘ = (6.129 ± 0.039) ⇥ 10�10
, !b = 0.02239 ± 0.00014 . (5.11)

We can also plot the 2d CMB likelihood function, LCMB(⌘, Yp) showing instead of ⌘,
the BBN value of Yp at that value of ⌘. This is shown in figure 7. That is, we use the peak of
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FIG. 5. Baryon-to-photon ratio determinations for di↵erent combinations of light element and

CMB data. We show BBN-only predictions based on D (dotted purple) and Yp (dashed magenta),

and CMB-only predictions in dot-dashed red. BBN+CMB (green dot-long dashed) uses the Planck

Yp data, while the tightest combined constraints, BBN+CMB+D (solid orange) further include the

observed D/H.

TABLE IV. Constraints on the baryon-to-photon ratio, using di↵erent combinations of observa-

tional constraints. We have marginalized over Yp to create 1D ⌘ likelihood distributions. Given

are both the mean (and its uncertainty) as well as the value of ⌘ at the peak of the distribution.

Constraints Used mean ⌘10 peak ⌘10

CMB-only 6.104 ± 0.055 6.104

BBN+Yp 6.741+1.220
�3.524 4.920

BBN+D 6.148 ± 0.191 6.145

BBN+Yp+D 6.143 ± 0.190 6.140

CMB+BBN 6.129 ± 0.041 6.129

CMB+BBN+Yp 6.128 ± 0.041 6.128

CMB+BBN+D 6.130 ± 0.040 6.129

CMB+BBN+Yp+D 6.129 ± 0.040 6.129
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0Figure 4. Light element abundance likelihood functions. Shown are likelihoods for each of the light

nuclides, normalized to show a maximum value of 1. The solid-lined, dark-shaded (purple) curves are
the BBN+CMB predictions, based on Planck inputs as discussed in the text. The dashed-lined, light-
shaded (yellow) curves show astronomical measurements of the primordial abundances, for all but
3He where reliable primordial abundance measures do not exist. For 4He, the dotted-lined, medium-
shaded (cyan) curve shows the independent CMB determination of 4He. We see excellent agreement
for D/H, good agreement for 4He, and strong discrepancy in 7Li constitutes the persistent lithium
problem.

where the central values give the mean, and the error gives the 1� variance. The final number
in parentheses gives the value at the peak of the distribution.

We compare our results to previous results in CFOY [2] and ref. [46] in table 3. The
values in eqs. (5.3)–(5.6) di↵er slightly from those given in table 3 as the latter were evaluated
using central values of all inputs at a single value of ⌘10 = 6.129.

There are additional ways of integrating over our various likelihood functions. We can
for example, simply marginalize the CMB likelihood function over YP to obtain a CMB-only
likelihood function of ⌘

LCMB(⌘) /
Z

LCMB(⌘, Yp) dYp . (5.7)

This is plotted in figure 5 as the red dot-dashed curve. Its mean and standard deviation are
given in table 4. Also given in table 4 is the position of the peak of the distribution. Its
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Table 3. Comparison of BBN Results.

Figure 5. Baryon-to-photon ratio determinations for di↵erent combinations of light element and
CMB data. We show BBN-only predictions based on D (dotted purple) and Yp (dashed magenta),
and CMB-only predictions in dot-dashed red. BBN+CMB (green dot-long dashed) uses the Planck
Yp data, while the tightest combined constraints, BBN+CMB+D (solid orange) further include the
observed D/H.

di↵erence from the mean value is a measure of the mode skewness of the distribution. It is
always very small.

The likelihood function LCMB(⌘) uses no information from BBN. In particular it does
not use the BBN relation between ⌘ and Yp. This relation can be folded in by computing

LCMB�BBN(⌘) /
Z

LCMB(⌘, Yp) LBBN(⌘; Yp) dYp , (5.8)

which is shown in figure 5 by the green dot-long dashed curve.
As is well known and seen in figure 2, there is a weak dependence of Yp on ⌘. As a

result, though one can form a likelihood function from BBN and Yp alone,

LBBN�OBS(⌘) /
Z

LBBN(⌘; Xi) LOBS(Xi) dXi , (5.9)

with Xi = Yp, it is not very instructive. It is shown in figure 5 by the very broad magenta
dashed curve. In contrast, D/H is a very good baryometer, and substituting Xi = D/H in
eq. (5.9) yields the purple dotted curve in figure 5. Finally, we can convolve all three primary
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observed D/H.
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The likelihood function LCMB(⌘) uses no information from BBN. In particular it does
not use the BBN relation between ⌘ and Yp. This relation can be folded in by computing

LCMB�BBN(⌘) /
Z

LCMB(⌘, Yp) LBBN(⌘; Yp) dYp , (5.8)

which is shown in figure 5 by the green dot-long dashed curve.
As is well known and seen in figure 2, there is a weak dependence of Yp on ⌘. As a

result, though one can form a likelihood function from BBN and Yp alone,

LBBN�OBS(⌘) /
Z

LBBN(⌘; Xi) LOBS(Xi) dXi , (5.9)

with Xi = Yp, it is not very instructive. It is shown in figure 5 by the very broad magenta
dashed curve. In contrast, D/H is a very good baryometer, and substituting Xi = D/H in
eq. (5.9) yields the purple dotted curve in figure 5. Finally, we can convolve all three primary
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Table 4. Constraints on the baryon-to-photon ratio, using di↵erent combinations of observational
constraints. We have marginalized over Yp to create 1D ⌘ likelihood distributions. Given are both
the mean (and its uncertainty) as well as the value of ⌘ at the peak of the distribution.

likelihood functions as

LCMB�BBN�OBS(⌘) /
Z

LCMB(⌘, Yp)LBBN(⌘; Xi) LOBS(Xi)
Y
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dXi , (5.10)

which is shown as the solid orange curve in figure 5. With the exception of LBBN�OBS(⌘)
using Yp, which carries little information, all of the likelihoods are remarkably consistent
which is another reflection of the agreement between the BBN prediction of D/H at the
CMB-determined value of ⌘ and the observationally-determined value of D/H. The mean,
standard deviations, and peaks of all of these likelihood functions are summarized in table 4.

As one can see from table 4, the BBN + D likelihood gives ⌘10 ' 6.15 and is slightly
lower than that found in CFOY (⌘10 ' 6.18). This is primarily due to the very slight shift
in the observational value of D/H used. With all other factors fixed the change in ⌘ can be
estimated from the sensitivities discussed earlier and we expect �(D/H)/(D/H) ' �1.6 �⌘/⌘.
In contrast, all of the CMB+BBN determinations of ⌘10 are increased from ' 6.10 (in 2015)
to roughly 6.13 presently. This tendency can be understood using figure 6 which shows
contours of the 2-D likelihood LCMB(⌘, Yp) for fixed N⌫ = 3. Also shown is the BBN relation
for Yp(⌘) which appears as a nearly horizontal line over this range in ⌘. Thus small changes in
⌘ barely a↵ect the peak of the likelihood function (shaded purple) in figure 4. In contrast, the
CMB contours show a significantly stronger and positive correlation between the CMB-only
determined baryon density and helium abundance. Now, as noted above, one of the more
noticeable changes between Planck 2015 and 2018 was the CMB-only determination of Yp.
Using Planck 2015, the peak of the CMB-only distribution of Yp was high compared to the
observational peak and as a result ⌘ was found to be lower when BBN was included (relative
to the CMB-only value of ⌘). Currently, as one sees in figure 4, the CMB-only distribution
for Yp sits below the observational value and as a result requires a higher value of ⌘ when
the distributions are convolved. This is precisely what we find. Our final combined value for
the baryon-to-photon ratio, is therefore

⌘ = (6.129 ± 0.039) ⇥ 10�10
, !b = 0.02239 ± 0.00014 . (5.11)

We can also plot the 2d CMB likelihood function, LCMB(⌘, Yp) showing instead of ⌘,
the BBN value of Yp at that value of ⌘. This is shown in figure 7. That is, we use the peak of
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taking into account the contributions of photons, electrons and positrons, and neutrino

flavors appropriate for temperatures T > 1 MeV. At these temperatures, weak interaction

rates between neutrons and protons maintain equilibrium.

At lower temperatures, the weak interactions can no longer keep up with the expansion

of the universe or equivalently, the mean time for an interaction becomes longer than the

age of the Universe. Thus, the freeze-out condition is set by

G2
FT

5 ∼ Γwk(Tf) = H(Tf) ∼ G1/2
N T 2, (2)

where Γwk represents the relevant weak interaction rates per baryon that scale roughly as

T 5, and H is the Hubble parameter

H2 =
8π

3
GNρ (3)

and scales as T 2 in a radiation dominated universe. GF and GN are the Fermi and Newton

constants respectively. Freeze-out occurs when the weak interaction rate falls below the ex-

pansion rate, Γwk < H . The β-interactions that control the relative abundances of neutrons

and protons freeze out at Tf ∼ 0.8MeV. At freeze-out, the neutron-to-proton ratio is given

approximately by the Boltzmann factor, (n/p)f ≃ e−∆m/Tf ∼ 1/5, where ∆m = mn −mp

is the neutron–proton mass difference. After freeze-out, free neutron decays drop the ratio

slightly to (n/p)bbn ≃ 1/7 before nucleosynthesis begins. A useful semi-analytic description

of freeze-out can be found in [58, 59].

The first link in the nucleosynthetic chain is p + n → d + γ and although the binding

energy of deuterium is relatively small, EB = 2.2 MeV, the large number of photons relative

to nucleons, η−1 ∼ 109 causes the so-called deuterium bottleneck. BBN is delayed until

η−1exp(−EB/T ) ∼ 1 when the deuterium destruction rate finally falls below its production

rate. This occurs when the temperature is approximately T ∼ EB/ ln η−1 ∼ 0.1 MeV.

To a good approximation, almost all of the neutrons present when the deuterium bottle-

neck breaks end up in 4He. It is therefore very easy to estimate the 4He mass fraction,

Yp =
2(n/p)

1 + (n/p)
≈ 0.25, (4)
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FIG. 8. The sensitivity of the light element predictions to the number of neutrino species, similar

to Figure 2. Here, abundances shown by blue, green, and red bands correspond to calculated

abundances assuming N⌫ = 2, 3 and 4 respectively.

As one can see in Fig. 8, without a lower bound on ⌘, it is not possible to set a meaningful

upper limit to N⌫ , even with a firm upper bound to Yp. Prior to the CMB determination

of ⌘, a lower bound on ⌘ was inferred from observations of of D and 3He implying N⌫ < 4

[116, 117]. More rigorous bounds on N⌫ became became possible when likelihood techniques

were introduced [22, 46, 110, 118–121].
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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3He/H = (9.95 ± 0.91) ⇥ 10�6 (9.95 ⇥ 10�6) (33)

7Li/H = (4.78 ± 0.74) ⇥ 10�10 (4.78 ⇥ 10�10) . (34)

Note that the value for Yp found from the BBN likelihood (31) is almost identical to the

observational value in Eq. (4) which is why the observational likelihood in Fig. 9 appears

masked.

We can also form a one-dimensional likelihood function of ⌘ with one of several combi-

nations of LNCMB(⌘, Yp, N⌫), LNBBN(⌘, N⌫ ;Xi), and LOBS(Xi). For example, by integrating

over both Yp and N⌫ , using only CMB data, we have

LNCMB(⌘) /
Z

LNCMB(⌘, Yp, N⌫) dYp dN⌫ , (35)

which is shown as the green dashed curved in the right panel of Fig. 10. Similarly, if we fold

in the relation between ⌘ and Yp we have

LNCMB�NBBN(⌘) /
Z

LNCMB(⌘, Yp, N⌫)LNBBN(⌘, N⌫ ;Xi) dYpdN⌫ , (36)

which is shown by the purple dotted curve in the right panel of Fig. 10. We can also fold in

the observations of either 4He, D/H or both using

LNCMB�NBBN�OBS(⌘) /
Z

LNCMB(⌘, Yp, N⌫)LNBBN(⌘, N⌫ ;Xi) LOBS(Xi)
Y

i

dXidN⌫ , (37)

which depending on the choice of observations is shown by the short dashed cyan curve

(using D/H), the red dot-dashed curve (using Yp) or the pink solid curve (using both) in the

right panel of Fig. 10. These are collectively shown in the left panel of the same figure by

the solid green curve labelled CMB+X. If we drop the CMB entirely, we can write

LNBBN�OBS(⌘) /
Z

LNBBN(⌘, N⌫ ;Xi) LOBS(Xi)
Y

i

dXidN⌫ , (38)

shown by the red short dashed curve in the left panel of Fig. 10. A comparison of the two

curves in the left panels shows the strength in determining ⌘ using the CMB relative to BBN

(D/H).

Similarly, we can form one-dimensional likelihood functions of N⌫ . For example, using

the CMB-only likelihood function, we can integrate over ⌘ and Yp

LNCMB(N⌫) /
Z

LNCMB(⌘, N⌫ , Yp)dYpd⌘ , (39)
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Table 1. The separately marginalized central 68.3% confidence limits and most-likely values on the baryon-to-
photon ratio ⌘ and effective number of neutrinos N⌫ , using different combinations of observational constraints.
The 95.45% upper limits from Eq. (4.4), given that N⌫ > 3, are also shown in the last column.

Constraints Used mean ⌘10 peak ⌘10 mean N⌫ peak N⌫ �N⌫

CMB-only 6.090± 0.061 6.090
+0.061

�0.062
2.800± 0.294 2.764

+0.308

�0.282
0.513

BBN+Yp+D 5.986± 0.161 5.980
+0.163

�0.159
2.889± 0.229 2.878

+0.232

�0.226
0.407

CMB+BBN 6.087± 0.061 6.088
+0.061

�0.062
2.848± 0.190 2.843

+0.192

�0.189
0.296

CMB+BBN+Yp 6.089± 0.053 6.089
+0.054

�0.054
2.853± 0.148 2.850

+0.149

�0.148
0.221

CMB+BBN+D 6.092± 0.060 6.093
+0.061

�0.060
2.916± 0.176 2.912

+0.178

�0.175
0.303

CMB+BBN+Yp+D 6.088± 0.054 6.088
+0.054

�0.054
2.898± 0.141 2.895

+0.142

�0.141
0.226

For the CMB-only results we marginalize the likelihood given in Eq. (3.3) over ⌘ to obtain the
distribution in N⌫

LNCMB(N⌫) /

Z
LNCMB(⌘, N⌫) d⌘ . (3.6)

This appears as the dashed blue curve in the left panel of Figure 4, which is entirely consistent with
the BBN-only curve and the Standard Model value, though the peak lies slightly below both. The
mean and peak values of N⌫ from the CMB-only likelihood function is given in the first row of Table
1. Similarly, we can marginalize over N⌫ to obtain

LNCMB(⌘) /

Z
LNCMB(⌘, N⌫) dN⌫ . (3.7)

The mean and peak values of ⌘ from the CMB-only likelihood function is also given in the first row
of Table 1.

Figure 4 shows that the BBN and CMB determinations of N⌫ are in excellent agreement with
each other, and with the Standard Model value. These three measures are all independent, so their
concordance is by no means guaranteed, but to the contrary marks a great success of the hot big bang
cosmology. Put differently, this agreement tells us that BBN and the CMB are consistent with both
the Standard Model (N⌫ = 3) and standard Cosmology (NBBN

⌫
= N

CMB

⌫
), showing no need for new

physics within our ability to measure.
It is also remarkable that BBN and the CMB probes N⌫ with similar precision. The BBN limits

remain slightly tighter, but the improvement of the CMB constraints after Planck has made them
closely competitive. The comparable strength in these two measure now offers new ways to probe the
early universe, as we now see.

The agreement between the BBN and CMB measures of N⌫ invites us to press onward in two
ways. (1) We can combine the BBN and CMB limits on N⌫ , assuming nothing occurs between the two
epochs to change this parameter. This analysis appears in §4, and this approach is the one adopted
in work to date. (2) We now can also search for, and place limits on, possible differences between N⌫

at the BBN and CMB epochs. This approach is novel, and appears in §5.

4 BBN and the CMB Combined: No New Physics After Nucleosynthesis

In this section we combine the BBN and CMB constraints on N⌫ , and apply the resulting limits
to a variety of particle physics and astrophysics examples. The limits we derive here rest on the
assumption that N

CMB

⌫
= N

BBN

⌫
, that is, there is no change in the cosmic radiation content between

the two epochs. This assumption is relaxed in §5. This approach is similar to that used in prior work.

– 10 –
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Table 1. The separately marginalized central 68.3% confidence limits and most-likely values on the baryon-to-
photon ratio ⌘ and effective number of neutrinos N⌫ , using different combinations of observational constraints.
The 95.45% upper limits from Eq. (4.4), given that N⌫ > 3, are also shown in the last column.
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Figure 4 shows that the BBN and CMB determinations of N⌫ are in excellent agreement with
each other, and with the Standard Model value. These three measures are all independent, so their
concordance is by no means guaranteed, but to the contrary marks a great success of the hot big bang
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BBN and the CMB
Convolved Likelihoods

Results for η (Nν)

Nν < 3.180 (95% CL)

Yeh, Shelton, Olive, Fields

Table 1. The separately marginalized central 68.3% confidence limits and most-likely values on the baryon-to-
photon ratio ⌘ and effective number of neutrinos N⌫ , using different combinations of observational constraints.
The 95.45% upper limits from Eq. (4.4), given that N⌫ > 3, are also shown in the last column.

Constraints Used mean ⌘10 peak ⌘10 mean N⌫ peak N⌫ �N⌫

CMB-only 6.090± 0.061 6.090
+0.061

�0.062
2.800± 0.294 2.764

+0.308

�0.282
0.513

BBN+Yp+D 5.986± 0.161 5.980
+0.163

�0.159
2.889± 0.229 2.878

+0.232

�0.226
0.407

CMB+BBN 6.087± 0.061 6.088
+0.061

�0.062
2.848± 0.190 2.843

+0.192

�0.189
0.296

CMB+BBN+Yp 6.089± 0.053 6.089
+0.054

�0.054
2.853± 0.148 2.850

+0.149

�0.148
0.221

CMB+BBN+D 6.092± 0.060 6.093
+0.061

�0.060
2.916± 0.176 2.912

+0.178

�0.175
0.303

CMB+BBN+Yp+D 6.088± 0.054 6.088
+0.054

�0.054
2.898± 0.141 2.895

+0.142

�0.141
0.226

For the CMB-only results we marginalize the likelihood given in Eq. (3.3) over ⌘ to obtain the
distribution in N⌫

LNCMB(N⌫) /

Z
LNCMB(⌘, N⌫) d⌘ . (3.6)

This appears as the dashed blue curve in the left panel of Figure 4, which is entirely consistent with
the BBN-only curve and the Standard Model value, though the peak lies slightly below both. The
mean and peak values of N⌫ from the CMB-only likelihood function is given in the first row of Table
1. Similarly, we can marginalize over N⌫ to obtain

LNCMB(⌘) /

Z
LNCMB(⌘, N⌫) dN⌫ . (3.7)

The mean and peak values of ⌘ from the CMB-only likelihood function is also given in the first row
of Table 1.

Figure 4 shows that the BBN and CMB determinations of N⌫ are in excellent agreement with
each other, and with the Standard Model value. These three measures are all independent, so their
concordance is by no means guaranteed, but to the contrary marks a great success of the hot big bang
cosmology. Put differently, this agreement tells us that BBN and the CMB are consistent with both
the Standard Model (N⌫ = 3) and standard Cosmology (NBBN

⌫
= N

CMB

⌫
), showing no need for new

physics within our ability to measure.
It is also remarkable that BBN and the CMB probes N⌫ with similar precision. The BBN limits

remain slightly tighter, but the improvement of the CMB constraints after Planck has made them
closely competitive. The comparable strength in these two measure now offers new ways to probe the
early universe, as we now see.

The agreement between the BBN and CMB measures of N⌫ invites us to press onward in two
ways. (1) We can combine the BBN and CMB limits on N⌫ , assuming nothing occurs between the two
epochs to change this parameter. This analysis appears in §4, and this approach is the one adopted
in work to date. (2) We now can also search for, and place limits on, possible differences between N⌫

at the BBN and CMB epochs. This approach is novel, and appears in §5.

4 BBN and the CMB Combined: No New Physics After Nucleosynthesis

In this section we combine the BBN and CMB constraints on N⌫ , and apply the resulting limits
to a variety of particle physics and astrophysics examples. The limits we derive here rest on the
assumption that N

CMB

⌫
= N

BBN

⌫
, that is, there is no change in the cosmic radiation content between

the two epochs. This assumption is relaxed in §5. This approach is similar to that used in prior work.
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Limits:

Yeh, Shelton, Olive, Fields

• Right-handed neutrinos and extra gauge boson masses

• Dark Radiation

• Stochastic Gravitational Wave Background

• Vacuum Energy - Trackers

• Primordial Magnetic Fields

• Limits on Changes in η and Nν between BBN and CMB

• Changes in Fundamental Constants



Summary

• BBN and CMB are in excellent agreement 
wrt D and He

• Li: Was Problematic
- Most certainly now due to stellar depletion

• Wish list:

- New cross sections measurements for 
D(D,p) and D(D,n)

- New high precision measurements of He

• Standard Model (Nν = 3) is looking good!



Neutrino Temperature

• At T ~ 1 MeV neutrinos decouple
• At T ~ 1/2 MeV e+ e- annihilate to photons
• Entropy of “γ’s” and ν’s conserved speparately
• Prior to annihilation, Tγ = Tν = T>

s> =
4

3

⇢>
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=
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3
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2
)(
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30
)T 3

>

• After annihilation, Tγ = T<  but, Tν = T>

s< =
4

3
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=
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30
)T 3

<

T⌫ = (4/11)1/3T� ' 1.9K



What does N > 3 mean?
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T A B L E  l 

Effective degrees Of freedom, pho ton  numbers ,  the permi t ted  n u m b e r  of 
new neut r inos  

Td ~) 4g ' (Td)  Ny(To)/Nv(Td) ( T A / T ) .  A N~ 

m e - m ,  43 2.75 l 0.94 
m ,  - m r 57 3.65 0.91 1.39 
m~ - T  c 69 4.41 0.85 1.80 

- m~ 205 13.1 0.59 7.67 
m s - m  c 247 15.8 0.56 9.85 
m c - m  ~ 289 18.5 0.53 12.1 
m , - m  b 303 19.4 0.52 12.9 
m b - m  t 345 22.1 0.50 15.3 
m t - m  w 387 24.8 0.48 17.8 

> m  w 423 27.1 0.47 19.9 

~)These results  here are for the choice of cons t i tuent  quark  masses  so that  Mu. d ~ T c << M~. 
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Fig. 1. The effective n u m b e r  of degrees of f reedom of in terac t ing  par t ic les  as a funct ion of temperature;  
a first approximat ion .  

(~/T). 

1.0 

0.5 

0 i J i i 
m ~ m .  T c m u m s 

(TA/T).x. vs T a 

h J i i i 

m c  m r f f l  b m l  m w 

T~ 

Fig. 2. The ra t io  of the t empera ture  of the superweakly  in terac t ing  par t ic le  A to the pho ton  tempera ture  
as a funct ion of the decoupl ing  temperature ;  a first approx imat ion .  

What does N > 3 mean?

Need Tf > mτ



What does N > 3 mean?
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asymptotically free quarks to unconfined color singlets to hadrons. To account for 
this, we evaluate the entropy in two ways. Using the hadrons listed in table 2, we 
calculate the entropy SH as a function of temperature [see eq. (26)]; i.e., we evaluate 
g~(T). Then, we repeat this calculation using the quarks listed in table 3 (for each 
choice of quark masses); we evaluate g~(T). We define the transition temperature by 
requiring that 

g h ( ~ )  : g;~(7~c) • (28) 

In this way no extra photons are produced by the transition from quarks to hadrons: 
Nv(>~ T~) = Nv(~< To). For constitutent quark masses, we find T~ ~ 0.21 GeV and for 
current algebra masses T~ ~ 0.22 GeV. We must emphasize that the quark-hadron 
transition is not sharp but, rather, goes smoothly from free quarks to free hadrons as 
the temperature drops from >> T c to << T c. We note in passing that the hadronic 
number density at T~ is 10-20 times nuclear matter density in agreement with the 
estimate by Baym [ 11 ]. 

As before, conservation of entropy and eqs. (23), (26) and (27) permit us to 
calculate the ratio of temperatures and photons as a function of the decoupling 
temperature: 

(29) 

Recall that Nv(To)=(~)'/aNv(T,) and g ' ( T , ) = ~ .  In fig. 3, g' is shown as a 
function of temperature for the two choices of quark masses. In fig. 4, we display 
(T  A / T ) ,  as a function of the decoupling temperature T d. 

Now we may re-evaluate the constraint from nucleosynthesis on AN, [see eqs. (20) 
and (21)]. Our results are plotted in fig. 5 where AN, is shown as a function of To, 
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Fig. 3. The effective number  of degrees of freedom of interacting particles as a function of temperature; 
an exact solution. 
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