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The HERD experiment — Scientific objectives

* Direct detection of high energy
cosmic rays (low flux: EY, y~2.7)

e Main scientific objectives:

- Fluxes of hadrons up to PeV/n

— Electron + positron flux up to tens
of TeV

- Gamma ray astronomy
- Indirect search of dark matter




The HERD experiment — The Detector

Innovative geometry: 5 active faces to have an effective geometric factor more than 10 times
that of the currently in orbit experiments (about 2.5 m?sr for electrons and about 1 m2sr for

protons)

PSD (Plastic SCD (Silicon
Scintillator Charge Detector):
Detector): charge
photons measurement and
identification and tracking
charge
measurement CALO
(CALOrimeter):
FIT (Flber energy
Tracker): measurement and
tracking electron-hadron

discrimination



The HERD experiment — The Calorimeter

Calorimeter Characteristics:

Finely segmented (about 7500 LYSO cubic scintillating crystals of side 3

cm)

Spherical shape Calorimeter requirements:
Homogeneous * Strong control of energy scale
3D * Independent triggers
Isotropic * Redundancy

Deep (55 Xo, 3 A\)
Large geometric acceptance
Good energy resolution (about 2.5% for electrons, < 30% for protons)

Double read-out systems:

* Wavelength shifting fibers
coupled to Intensified Scientific
CMOS

* Double Photodiode




The HERD experiment — Calorimeter read-out requirements

-Extremely large dynamic range: >10’ ~250 TeV
_ -Saturation level of the single channel
every crystal: more then 20 times of currently in orbit
« Calibration via MIP: ~30 MeV .
e Hadrons up to PeV/n: ~250 TeV experiment
-Number of channels more then 20
times of currently in orbit experiments

Energy deposit to measure in

Also needed:
Low power consumption
Low noise

Developing ad hoc sensors and
read-out electronics ~MeV



Double Photodiode read-out system — The sensors

Composed by two photodiodes with different active areas
assembled in a plastic package (every PD has its own ceramic
package):

LargePhotoDiode (LPD) - VTH2110, active area 25 mm?
SmallPhotoDiode (SPD) - VTP9412, active area 1.6 mm?
(both produced by Excelitas Technologies)

Different active areas means sensibility to different levels of the scintillation signal - extend dynamic range

* LPD sensible to larger signals, lower saturation level - calibrated via MIP particles
« SPD sensible to bigger signals, higher minimum detectable signal — calibrated via its correlation with
LPD

We need an overlapping region between the working ranges of the two photodiodes to calibrate the SPD



Double Photodiode read-out system — The FrontEnd Electronics

FEE developed for the experiment: HIDRA chip

* Low power consumption: 3.75 mW per channel s
e Low noise: ENC ~ 2500 equivalent electrons TR -
 High dynamic range: 10° Gk CoARse M
* Self-trigger circuit o '

- CDS Reset + cs,
Composed by two main parts: HfT'f’
* Charge Sensitive Amplifier (CSA) " N e B [t y
* Correlated Double Sampling (CDS) - L pmp u
High dynamic range reached thanks to the L T R
automatic gain selection of the CSA: ek Rt Newwork

HighGain / LowGain = 20



Double Photodiode read-out system — The system response

PD system response
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Double photodiode read-out system
Development of the sensors
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SPS2021 beam test — System characterization results

LPD

L ]
~10 MeV ~190 GeV
SPD

1
I 1
SNR ~ 60 ~3TeV

(not to scale)

' Desired SPD |
I 1
SNR > 15 ~250 TeV

We need to reduce SPD signal of about 98.5%, corresponding to a ratio between
LPD and SPD signals of about 1300 instead of 20

Developing a new sensor
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Double photodiode read-out system
Development of the sensors - 2

Collaboration with Excelitas
Technologies from 2022 to develop a
new sensor

LPD and SPD in same FR4 package
+ SPD surface covered with inconel

(metallic deposition) filter (requested
transmittance of 1.5%)

Tested at Careggi hospital
radiotherapy accelerator

LPD/SPD~50
Filter technology not controlled for
isotropic light!
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Double photodiode read-out system

Development of t

Second Excelitas
development (end 2022):
mask part of SPD active area

Tested at BTF Frascati
5 crystals equipped

LPD/SPD~500

Signal from photons hitting
outside the chip metallization

The mask reduce only light
signal, not direct ionization
signal!
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Double photodiode read-out system
Development of the sensors

Homemade version
Tested in 2021 at SPS
63 crystals equipped

LPD/SPD~20

First Excelitas
development (start
2022)

LPD/SPD~50

LPD and SPD in same
FR4 package + SPD
surface covered with
filter

Second Excelitas
development (end 2022)
Tested in PS-SPS2023
500 crystals equipped

LPD/SPD~500

Mask part of SPD active
area

Third Excelitas
development

LPD/SPD - 1300

Epitaxial SPD
Active area:
0.02mm?

First
prototypes
expected at
the end of

this year
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Summary

Status of the PD read-out system:

* Very high dynamic range: >10’

* Low noise

* Low power consumption

* New sensors expected at the end of this year

The innovative HERD double photodiode read-out system with high dynamic range,
low power consumption and low noise is approaching the final steps of its definition.

This will let us to measure from MIP releases in a crystal (~30 MeV) up to releases
of PeV cosmic protons (~250 TeV).
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Development of the sensors — 3

SPS beam test in 2023
* Prototype of 1029 crystals

Energy resolution for electrons Nuclei peaks in LYSO
CALO energy resolution ,
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Developing new features in the read-out electronics

HIDRAS3 chip release

Single-channel switch-off with settable
threshold to avoid signal injection in
neighboring channels when over-saturating
Increase the number of channels for every
chip (from 16 to 24)

New front-end board hosting HIDRA3 chips
and TROC2 logic

New kapton cables for flight model

Cable length extended for flight model (from 10
to 21 packages connections)

Connections for 3 diodes for common noise
subtraction

Connections for 3 blinded photodiodes for
direct ionization monitoring

Shielding from electromagnetic interferences
optimized
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Developing new features in the read-out electronics — BTF

New kapton
cables

New TROC2s

beam test

Beam Test Facility at Laboratori Nazionali di Frascati, INFN
Facility for beam test with electrons up to about 450 MeV,
multiplicity from 1 to 10%-10°

 Composed by 32 crystals: 27 equipped with v1.0 PD package, 5
with the v1.1

* Crystals placed on 3 trays with a maximum length of 5 crystals
along the beam line (new version of PD package)

* Upstream pixel detector for beam monitoring

* Single particle runs: 450, 300, 150 MeV electrons
* Multiplicity scans from single particle up to 24k electrons per
event
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Developing new features in the read-out electronics — BTF beam test

* Analysis is just at the beginning

* Preliminary results:
* Noise is compatible with previous FEE and kapton cables
» Test of anti-saturation mechanism

Noise of one HiDRA3 chip Beam multiplicity scan to study saturation
Variation due to length of tracks in kapton mechanism - if the signal overcome the threshold
cable then the channel is switched off
o T
zam HiDRALﬂh:p riL_|—V suo?
mgj 200;
Shorter tracks in kapton cable Increasing beam multiplicity
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