Development of the photo-diode subsystem for the HERD calorimeter double-readout

O. Adriani et al 2022 JINST 17 P09002

International School of Subnuclear Physics Erice 15/06/2024

Pietro Betti University and INFN Firenze

Agenzia

Spaziale

Italiana

UNIVERSITÀ

DEGLI STUDI

FIRENZE

The HERD experiment – Scientific objectives

- Direct detection of high energy cosmic rays (low flux: E^{-γ}, γ~2.7)
- Main scientific objectives:
 - Fluxes of hadrons up to PeV/n
 - Electron + positron flux up to tens of TeV
 - Gamma ray astronomy
 - Indirect search of dark matter

The HERD experiment – The Detector

Innovative geometry: 5 active faces to have an effective geometric factor more than 10 times that of the currently in orbit experiments (about 2.5 m²sr for electrons and about 1 m²sr for protons)

The HERD experiment – The Calorimeter

Calorimeter Characteristics:

- Finely segmented (about 7500 LYSO cubic scintillating crystals of side 3 cm)
- Spherical shape
- Homogeneous
- 3D
- Isotropic
- Deep (55 X₀, 3 λ_l)
- Large geometric acceptance
- Good energy resolution (about 2.5% for electrons, < 30% for protons)

Calorimeter requirements:

- Strong control of energy scale
- Independent triggers
- Redundancy

Double read-out systems:

- Wavelength shifting fibers coupled to Intensified Scientific CMOS
- Double Photodiode

The HERD experiment – Calorimeter read-out requirements

Energy deposit to measure in every crystal:

- Calibration via MIP: ~30 MeV
- Hadrons up to PeV/n: ~250 TeV

 Extremely large dynamic range: >10⁷
 Saturation level of the single channel more then 20 times of currently in orbit experiment

~250 TeV

~MeV

5

-Number of channels more then 20 times of currently in orbit experiments

Also needed: Low power consumption Low noise

Developing ad hoc sensors and read-out electronics

Double Photodiode read-out system – The sensors

Composed by two photodiodes with different active areas assembled in a plastic package (every PD has its own ceramic package):

LargePhotoDiode (LPD) \rightarrow VTH2110, active area 25 mm² SmallPhotoDiode (SPD) \rightarrow VTP9412, active area 1.6 mm² (both produced by Excelitas Technologies)

Different active areas means sensibility to different levels of the scintillation signal \rightarrow extend dynamic range

- LPD sensible to larger signals, lower saturation level \rightarrow calibrated via MIP particles
- SPD sensible to bigger signals, higher minimum detectable signal → calibrated via its correlation with LPD

We need an overlapping region between the working ranges of the two photodiodes to calibrate the SPD

Double Photodiode read-out system – The FrontEnd Electronics

FEE developed for the experiment: HiDRA chip

- Low power consumption: 3.75 mW per channel
- Low noise: ENC ~ 2500 equivalent electrons
- High dynamic range: 10⁵
- Self-trigger circuit

Composed by two main parts:

- Charge Sensitive Amplifier (CSA)
- Correlated Double Sampling (CDS)

High dynamic range reached thanks to the **automatic gain selection of the CSA**: HighGain / LowGain = 20

7

Double Photodiode read-out system – The system response

Double photodiode read-out system Development of the sensors - 1

Homemade version Tested in 2021 at SPS 63 crystals equipped

LPD/SPD~20

SPS2021 beam test – System characterization results

10

Developing a new sensor

Double photodiode read-out system Development of the sensors - 2

Collaboration with Excelitas Technologies from 2022 to develop a new sensor

LPD and SPD in same FR4 package + SPD surface covered with inconel (metallic deposition) filter (requested transmittance of 1.5%)

Tested at Careggi hospital radiotherapy accelerator

LPD/SPD~50 Filter technology not controlled for isotropic light!

Double photodiode read-out system Development of the sensors - 3

Second Excelitas development (end 2022): mask part of SPD active area

Tested at BTF Frascati 5 crystals equipped

LPD/SPD~500

Signal from photons hitting outside the chip metallization

The mask reduce only light signal, not direct ionization signal!

SPD v1.0

Double photodiode read-out system Development of the sensors

Homemade version Tested in 2021 at SPS 63 crystals equipped

LPD/SPD~20

First Excelitas development (start 2022)

LPD/SPD~50

Second Excelitas development (end 2022) Tested in PS-SPS2023 500 crystals equipped

LPD/SPD~500

Third Excelitas development

 $LPD/SPD \rightarrow 1300$

Epitaxial SPD Active area: 0.02mm²

LPD and SPD in same FR4 package + SPD surface covered with filter

Mask part of SPD active area

First prototypes expected at the end of this year

Summary

Status of the PD read-out system:

- Very high dynamic range: >10⁷
- Low noise
- Low power consumption
- New sensors expected at the end of this year

The innovative HERD double photodiode read-out system with high dynamic range, low power consumption and low noise is approaching the final steps of its definition. This will let us to measure from MIP releases in a crystal (~30 MeV) up to releases of PeV cosmic protons (~250 TeV).

Development of the sensors – 3 SPS beam test in 2023

• Prototype of 1029 crystals

Nuclei peaks in LYSO

Developing new features in the read-out electronics

- HiDRA3 chip release
- Single-channel switch-off with settable threshold to avoid signal injection in neighboring channels when over-saturating
- Increase the number of channels for every chip (from 16 to 24)
- New front-end board hosting HiDRA3 chips and TROC2 logic

- New kapton cables for flight model
- Cable length extended for flight model (from 10 to 21 packages connections)
- Connections for 3 diodes for common noise subtraction
- Connections for 3 blinded photodiodes for direct ionization monitoring
- Shielding from electromagnetic interferences
 optimized

Developing new features in the read-out electronics – BTF beam test

Beam Test Facility at Laboratori Nazionali di Frascati, INFN Facility for beam test with electrons up to about 450 MeV, multiplicity from 1 to 10^4 - 10^5

- Composed by 32 crystals: 27 equipped with v1.0 PD package, 5 with the v1.1
- Crystals placed on 3 trays with a maximum length of 5 crystals along the beam line (new version of PD package)
- Upstream pixel detector for beam monitoring
- Single particle runs: 450, 300, 150 MeV electrons
- Multiplicity scans from single particle up to 24k electrons per event

Developing new features in the read-out electronics – BTF beam test

- Analysis is just at the beginning
- Preliminary results:
 - Noise is compatible with previous FEE and kapton cables
 - Test of anti-saturation mechanism

Noise of one HiDRA3 chip Variation due to length of tracks in kapton cable

Beam multiplicity scan to study saturation mechanism \rightarrow if the signal overcome the threshold then the channel is switched off