Reactor Antineutrino Flux and Spectrum Measurements with Daya Bay Full Data Set

Jinhao Huang Institute of High Energy Physics (IHEP) huangjinhao@ihep·ac·cn

Reactor antineutrinos

235U Therma

(a)

- #1 - 92R

-#3 - 142Cs

- #4 - 100Nb

#5 - 93Rb

- 94RH

#13 - 955

- #15 - 99Y - #16 - 86Bi - #17 - 89Bi

- #18 - 98Y

-#19 - 146La

– #20 - 143C: – Sum

Exp.

Powerful $\overline{\nu}_e$ source:

- Used to discover neutrino.
- Used to measure θ_{13} , NMO...
- β decays of fission fragments of ²³⁵U, ²³⁸U,
 ²³⁹Pu, and ²⁴¹Pu.

Conversion model:

- convert ILL β spectra to $\bar{\nu}_e$ spectra
- \sim 30 virtual β decay branches.
- ~ 2.4% uncertainty

(<mark>201</mark>2)

Huber-Mueller (HM) model

Summation model:

5.00

Electron Energy (MeV)

6.00

7.00

• ~1000 isotopes

4.00

3.00

- ~6000 branches
- ~10% uncertainty
- SM2018

2.00

1.00

10-1

Scientific problems

KI model (Convert)

SM2018 model

(Summation)

- The origin of the excess has not been fully identified vet.
- **Reactor antineutrinos unpredicted by the model?**

Precision measurements of flux/spectrum

٠

- Understand these anomalies better
- Help improve the nuclear database
- Provide inputs for model and future reactor antineutrino experiments.

• Preserves incoming $\bar{\nu}_e$ energy information

Positron and neutron coincidence \rightarrow powerful background rejection.

- 6 reactor cores, 17.4 GW_{th}
- 8 identical antineutrino detectors (ADs) at 3 sites.
- Operated for 3,158 days (Dec. 2011 ~ Dec. 2020)

Overall spectrum

- 25 bins in 0.7~8 MeV for reconstructed energy of IBD prompt signal.
- ~1.4% precision in 2~5 MeV.
- Shape discrepancy w.r.t. HM model:
 - ~10 σ significance in 4~6 MeV.

Precision measurements

Precisions increase about 10% to 20%.

- SVD unfolding method
 - Overall, ²³⁵U and ²³⁹Pu spectra are unfolded together.
 - Minimizing $(S^{rec} RS^{\nu})^T V^{-1} (S^{rec} RS^{\nu}) + \tau (CS^{\nu})^T (CS^{\nu})$

Add bias but suppress variance

- Flux and spectra precision measurements with Daya Bay full data set.
 - The world leading ²³⁹Pu flux and spectra results.
 - The world leading ²³⁵U flux result.
- First time to unfold three spectra simultaneously.
 - A detailed investigation on the correlation.
- Provides a data-driven input for future reactor antineutrino studies.

香港科技大學賽馬會高等研究院 HKUST Jockey Club Institute for Advanced Study Many Chanks:

Back up

Extract ²³⁵U and ²³⁹Pu yields

Overall yield Yields to be
evolution data extracted
$$\chi^{2} = \chi^{2}(\sigma_{f}, F, \sigma_{i}, \epsilon) + \chi^{2}(\sigma_{238}, \sigma_{241})$$
Eff. fiss. frac. Constrained by HM
systematics

•
$$\sigma_{235} = (6.16 \pm 0.12) \times 10^{-43}$$

- $\sigma_{239} = (4.16 \pm 0.21) \times 10^{-43}$ (unit: cm²/fission)
- Compare with HM:
 - 7.0% deficit (3 σ significance) for ²³⁵U
 - 4.2% deficit (0.9 σ significance) for ²³⁹Pu

Extract ²³⁵U and ²³⁹Pu spectra

Overall spectrum Isotopic spectra evolution data to be extracted $\chi^{2} = \chi^{2}(S_{f}, F, S_{i}, \epsilon) + \chi^{2}(S_{238}, S_{241})$ Eff. fiss. frac. Constrained by HM (Conservative HM err. setting) systematics

- ²³⁵U:
 - $\sim 4\sigma$ significance in 4 ~ 6 MeV
- ²³⁹Pu:
 - $\sim 1\sigma$ significance in 4 ~ 6 MeV
- Pu combo:
 - $S_{combo} = S_{239} + 0.185 \times S_{241}$
 - Reduce uncertainty by 30%

Fuel evolution

- IBD yield per nuclear fission σ : number of $\overline{v_e}$ per fission × cross section
- Overall σ_f : (5.84 ± 0.07)×10⁻⁴³ cm²/fission
- Slope $\left(\frac{d\sigma}{dF_{239}}\right)$:
 - Slope larger than HM means the ²³⁵U yield is smaller than HM prediction.

Prompt energy and background of EH1

	Statistics
PRL116, 061801(2016)	~0.3 million
CPC41, 013002(2017)	~1.1 million
PRL123, 111801(2019)	~3.5 million
This work	~4.7 million

- 4.7 million IBD candidates collected at 4 near ADs.
- n-Gd as delay signal.

- In one burning period: ²³⁵U↓²³⁸U—²³⁹Pu↑²⁴¹Pu↑
- Effective fission fraction F_i: fraction of fission isotopes viewed in detectors. (weekly basis)
- $F_{241} \approx 0.185 \times F_{239}$

Fuel evolution in terms of F_{239}

• Minimizing: $(S^{rec} - RS^{\nu})^T V^{-1} (S^{rec} - RS^{\nu}) + \tau (CS^{\nu})^T (CS^{\nu})$

•
$$S^{rec} = [S_{overall}, S_{235}, S_{239}]$$

• $C = \begin{bmatrix} C_2 & \\ & C_2 \\ & & C_2 \end{bmatrix}$

Reactor antineutrino model

