

1

Precision measurements of W- and Z-boson transverse momentum spectra at ATLAS

Zhibo Wu Annecy LAPP

For the International School of Subnuclear Physics

15/06/2024

The motivation of p_{T}^{W} and p_{T}^{Z} measurements

Reduce the p_T^W modelling uncertainty in the m_W measurement.

- ATLAS 7 TeV m_W analysis: 6 MeV p_T^W modelling uncertainty due to the p_T^Z -> p_T^W extrapolation.
- Solution: Direct p_T^W measurement.
- Measuring both p_T^W and p_T^Z tests the underlying QCD predictions.

Targeted p_T^W precision:

- A granularity of 6~7 GeV.
- 1~2% uncertainty for p_T^W <25 GeV where the fixed-order perturbative prediction fails.

*doi: <u>10.1126/science.abk1781</u>

The ATLAS experiment

ATLAS detector: one of the general purpose detectors at LHC

Cut-away view of ATLAS

ATLAS detects the final state particles of proton-proton collisions.

e.g. pp -> H -> eeµµ event display $_{3}$

Event topology: leptonic decay of W/Z

• Only **two objects** to measure: (1) The charged lepton (2) Hadronic recoil $\vec{u}_T = \Sigma \vec{p}_T^{ISR q,g} = -\vec{p}_T^V$

> W events: $u_T \rightarrow p_T^W$ Z events: $p_T^{ll} \rightarrow p_T^Z$ or $u_T \rightarrow p_T^Z$

- Detector calibrations are needed for lepton and recoil.
- Detector resolution of u_T is affected by underlying event and pile-up.

Lower pile-up in the dataset -> More precise measurement of p_T^W

ATLAS Run 2 low pile-up data

MC simulations matching the low pile-up condition in data:

• W & Z, top-related background and di-boson background.

Detector calibration

- The lepton momentum in the simulation is corrected to reproduce the resonance of Z-boson in data.
- Recoil calibration: use p_T^{ll} to constrain the detector response of recoil ($p_T^Z = p_T^{ll}$ and $\vec{u}_T + \vec{p}_T^V = 0$)

Efficiency measured in Z->II events with "tag & probe".

Unfolding

- Iterative Bayesian unfolding (IBU) for p_T^W : $\vec{u}_T = \Sigma \vec{p}_T^{ISR q,g} = -\vec{p}_T^V$
- p_T^Z spectrum can be obtained by unfolding u_T and p_T^{ll} .
- -> Compatibility test of the unfolding

Results of the measurements

Differential cross-section @ 13 TeV

Integrated fiducial cross-section

Process	$\sigma_{\rm fid}(\sqrt{s} = 5.02 {\rm TeV}) [{\rm pb}]$	$\sigma_{\rm fid}(\sqrt{s}=13{\rm TeV})~{\rm [pb]}$
$W^- \to \ell^- \nu$	$1384 \pm 2 \text{ (stat.)} \pm 5 \text{ (syst.)} \pm 15 \text{ (lumi.)}$	$3486 \pm 3 \text{ (stat.)} \pm 18 \text{ (syst.)} \pm 34 \text{ (lumi.)}$
$W^{+} \to \ell^{+} \nu$ $Z \to \ell \ell$	$2228 \pm 3 \text{ (stat.)} \pm 8 \text{ (syst.)} \pm 23 \text{ (lumi.)}$ $333.0 \pm 1.2 \text{ (stat.)} \pm 2.2 \text{ (syst.)} \pm 3.3 \text{ (lumi.)}$	$45/1 \pm 3$ (stat.) ± 21 (syst.) ± 44 (lumi.) 780.3 ± 2.6 (stat.) ± 7.1 (syst.) ± 7.1 (lumi.)

Integrated cross-section ratios

Processes	Cross-section ratio at $\sqrt{s} = 5.02 \text{ TeV}$	Cross-section ratio at $\sqrt{s} = 13$ TeV
W^+/W^-	1.609 ± 0.003 (stat.) ± 0.004 (syst.)	1.308 ± 0.003 (stat.) ± 0.004 (syst.)
W^-/Z	$4.16 \pm 0.02 \text{ (stat.)} \pm 0.03 \text{ (syst.)}$	$4.46 \pm 0.02 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$
W^+/Z	$6.69 \pm 0.02 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$	$5.84 \pm 0.02 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$
W^{\pm}/Z	$10.85 \pm 0.04 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$	$10.30 \pm 0.04 \text{ (stat.)} \pm 0.10 \text{ (syst.)}$

Paper submitted to EPJC (arXiv:2404.06204)

The p_T^W uncertainties are propagated to the m_W fit for the preliminary result.

Summary

- The p_T^W measurement in ATLAS using special low pile-up data achieves remarkable precision (1-2% total uncertainty and a granularity of 7 GeV) and provides valuable input to the m_W measurement.
- The production of the Z-boson is compared with that of the W-boson at two well-separated center-of-mass energies.
- In addition to electro-weak precision measurements, I was also involved in the detector production for the upgrade of the ATLAS muon system* and the development of statistics method for high energy physics experiments**.
- Nowadays, I'm focusing on Higgs self-coupling and flavour tagging in ATLAS, as well as the detector simulation for FCC.

* doi : 10.1016/j.nima.2021.166143
** doi : 10.1140/epjc/s10052-024-12877-5

Thank you!

Motivation of the measurement

- In the m_W measurement, the lepton p_T spectrum requires a modelling of $p_T^W < \sim 1\%$ in the low values of p_T^W where the fixed-order perturbative prediction fails.
- Direct measurement of p_T^W , instead of modelling p_T^W based on measured p_T^Z , avoids the uncertainty due to the extrapolation.

 p_T^Z is also measured: Measuring both p_T^W and p_T^Z tests the differences in W and Z production processes. The measurement at 5.02 TeV is the input to the PDF fit.

Physics modelling

The "master formula" of differential cross-section for the Drell-Yan process

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{1}\mathrm{d}p_{2}} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}}\Big|_{y} \frac{\mathrm{d}\sigma(y)^{-1}}{\mathrm{d}y}\right] \times \left[(1 + \cos^{2}\theta) + \sum_{i=0}^{7} A_{i}(p_{\mathrm{T}}, y, m)P_{i}(\cos\theta, \phi)\right]$$

For the leptonic decay of W/Z bosons, the kinematics of the decay product can be described by a factorization of differential cross-sections.

- $\frac{d\sigma(m)}{dm}$: The resonance peak of the vector boson -> Breit Wigner distribution.
- $\frac{d\sigma(y)}{dy}$: Boson rapidity
- $\frac{d\sigma(p_T)}{dp_T} |_y \left(\frac{d\sigma(y)}{dy}\right)^{-1}$: Boson transverse momentum at given rapidity.
- A_i : Angular coefficients describe the polarization of the vector boson.

MC samples and event selection

In order to match the low pile-up condition in data:

- W & Z, top-related background and di-boson background: MC simulations.
- Multijet background: Heavy flavor quark decays and pions faking electrons are hard to simulate accurately.
 - -> Data-driven estimation of the multijet yield and shape.

Cut	Description		
One charged lepton	Exactly one electron or muon	Analysis cuts for W	
Lepton trigger	 1 electron, E_T > 15 GeV, loose ID. Or 1 muon, E_T > 14 GeV. 	signal selection	
Isolation	Ptcone20 / Min(p_T^l , 50GeV) < 0.1	ptconeXX: The sum of p_T of	
	$p_T^l > 25 \text{ GeV}$	tracks in the given cone around the interested object.	
Kinematics	$E_T^{miss} > 25 \text{ GeV}$		
	$m_T > 50 \text{ GeV}$		

Detector calibration: hadronic recoil

- In Z->II events, the transverse momentum of the di-lepton pair (p^{II}_T) is well-measured.
- p_T^{ll} corresponds to the transverse momentum of Z-boson ($p_T^Z = p_T^{ll}$).

Use the p_T^{ll} constraint to calibrate the response and resolution of u_T in Z->II events. Then extrapolate the results to W events.

Multijet background

The main contribution of multijet background in muon channels: $b\overline{b}$, $c\overline{c}$ decay. MC simulation normalized to the data-driven estimation.

In W events:

$$m_{T} = \sqrt{2p_{T}^{l}p_{T}^{miss} \left(1 - \cos\left(\varphi_{l} - \varphi_{p_{T}^{miss}}\right)\right)}$$
$$\vec{p}_{T}^{miss} = -(\vec{p}_{T}^{l} + \vec{u}_{T}) \text{ for the neutrino}$$

The multijet background (MJ) due to the heavy flavor quark decays and pions faking electrons is hard to be accurately simulated by MC -> Derive from the data-driven estimation method.

Two elements to be estimated:

- MJ yield in the signal region.
- MJ shape in the signal region.

Unfolding

Event display of the low pile-up data

The event display of a W^- boson candidate at 13 TeV.

- Orange line: muon
- Red arrow: missing transverse
 momentum

Event kinematics:

- p_T^{μ} =35 GeV
- Reconstructed $p_T^W = 16 \text{ GeV}$
- m_T =77 GeV
- p_T^{miss} =49 GeV.