

Feasibility Study on Atmospheric Neutrino Oscillations at JUNO

Xinhai He

On behalf of JUNO Collaboration

60th International School of Subnuclear Physics New Talent Session Erice, 15th June, 2024

xhhe@ihep.ac.cn

Institute of High Energy Physics, Beijing, China University of Chinese Academy of Sciences, Beijing, China

Atmospheric Neutrino Oscillations

Source:

Cosmic rays interact with the Earth's atmosphere, v produced by the decay of secondary mesons

Propagation:

Oscillation in matter is sensitive to neutrino mass ordering

Detect Atmospheric Neutrino with JUNO

The Jiangmen Underground Neutrino Observatory (JUNO):

J. Phys. G 43, 030401 (2016)

- \succ A multi-purpose detector with primary goal: determine the neutrino mass ordering (NMO)
- Target Mass: 20 kiloton liquid scintillator (LS)
- \blacktriangleright Optical Coverage: $\sim 78\%$
 - 17,612 20-inch large PMTs and 25,600 3-inch small PMTs instrumented in the Central Detector (CD)
- \blacktriangleright Rock Overburden: ~650 m

Detect Atmospheric Neutrino with JUNO

Water Cherenkov Detector:

- Cherenkov ring
- High energy threshold

Liquid Scintillator Detector:

- Isotropic scintillation light
- Low energy threshold
 - Hadrons detection
 - Neutron tagging

arxiv: 2311.05105

Key Information of Atm ν :

Challenges:

- Isotropic scintillation light from charged particles in LS
- Complicated final-state components from multi-GeV atmospheric neutrino

 θ direction

Directionality of Atmospheric Neutrino

- **Directionality** of charged particle is reflected in the **PMT waveforms**
- Final-state charged hadrons provide extra constrain on directionality reconstruction for atmospheric neutrinos

Atmospheric Neutrino Flavor Identification

- Electron induces EM shower to produce secondary electrons , while muon will directly deposit energy through ionization
- Electron and muon exhibit quite different topology of PMTs hitting pattern

Atmospheric $\nu/\overline{\nu}$ Discrimination

More energy transfer to hadrons for ν than $\overline{\nu}$

- More hadronic components: different quenching and timing with leptons
- \rightarrow Prompt Signal Info.

More primary neutrons from CC interaction of $\overline{\nu}$

- $\bar{\nu} + p^+ \rightarrow n + l^+$
- $\nu + n \rightarrow p^+ + l^-$
- \rightarrow Secondary Signal Info.

Atmospheric $\nu/\bar{\nu}$ Discrimination

Characteristics of Captured Neutrons

Detector Geometry Effect at JUNO

Detector Geometry Effect on Fully-Contained Events

FC (Fully Contained) LS Water

The final-state muon tends to attain higher energy from $\overline{\nu}_{\mu}$ -CC than ν_{μ} -CC

Thanks to the large detector size $(R_{CD} \sim 20 \text{ m})$, kinematic difference can be remained between $\overline{\nu}_{\mu}$ -CC and ν_{μ} -CC under the geometry effect

A Multi-purpose Machine Learning Approach

- Step 1: Features extraction from PMT waveforms
- Step 2: Features projection
- Step 3: Model training
- Step 4: Validation

Direction Reconstruction

- Better than 10° zenith angle resolution for neutrino with $E_{\nu} > 3 \text{ GeV}$ Phys. Rev. D 109, 052005 (2024)
- This resolution is smaller than the average angle between the directions of neutrino and charged lepton:
 - Both lepton and hadrons information has been used in direction reconstruction
 - Low energy threshold of LS detectors allows more precise detection for hadrons

Type Identification

Better performance for $\nu_{\mu}/\overline{\nu}_{\mu}$ discrimination with PMT features only:

- It is more easy to divide hadronic and leptonic part for muon neutrino than electron neutrino
- **Capture neutrons information** improves the performance of v_e/\overline{v}_e discrimination, while less effective for v_μ/\overline{v}_μ

Summary

- Atmospheric neutrino oscillations with matter effect can enhance the NMO sensitivity at JUNO
- Challenges: Directionality reco. and PID
 - Directionality of charged particle is reflected in the PMT waveforms
 - Electron and muon show different topology
 - Hadrons and captured neutron provide great potential for $\nu/\bar{\nu}$ discrimination
- A Multi-purpose machine learning approach has been developed for GeV atm. ν reconstruction

Thank you!

	Recent Developments
Event Selection v_e/\overline{v}_e	$E_{vis} > 1 { m GeV}$
Directionality	$\sigma_{ heta_{ u}} < 10^{\circ}$ ($E_{ u} > 3 \; { m GeV}$)
Classification	CC- <i>e</i> /CC-μ/NC: 80%~95% eff.
	ν vs ν : 50%~80% eff.
Energy	$\sigma_{E_{oldsymbol{ u}}}$ (To be updated)

Backup: Atmospheric $\nu/\overline{\nu}$ Discrimination

Characteristics of Captured Neutrons

- Captured neutrons are mainly produced by secondary interaction of final-state hadrons, such as $\{n, p^+, \pi^+, \pi^-\}$
- The multiplicity of captured neutrons (N_{nCap}) will carry the energy information of hadrons

Backup: Atmospheric Neutrino Type Identification

tron Multiplicity

Michel Elect

Characteristics of Michel Electron

- Muon decay will produce Michel electron with few-tens MeV energy and ~2.2 µs delayed time
- The distance between Michel electron and interaction vertex can represent the track length of final-state muon, which can benefit the neutrino flavor identification

Backup: Cosmic-ray Muon Suppression

Right plot: an exemplar event classification/selection strategy

Backup: Detector Geometry Effect

