Studying the low-energy regime of QCD

Jorge Baeza-Ballesteros

IFIC, University of Valencia-CSIC

New Talents Session - 16th June 2024

Introduction	Large N _c	ChPT	Lattice QCD	Conclusions
•0				
QCD at	low energies			

QCD has a very simple Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = -rac{1}{4g^2}\mathsf{Tr}[F_{\mu
u}F^{\mu
u}] + \sum_f \overline{q}_f(i\gamma_\mu D^\mu - m_f)q_f$$

Asymptotic freedom ----> Perturbative methods fail at low energies

QCD has a very simple Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = -rac{1}{4g^2}\mathsf{Tr}[F_{\mu
u}F^{\mu
u}] + \sum_f \overline{q}_f(i\gamma_\mu D^\mu - m_f)q_f$$

Asymptotic freedom ----> Perturbative methods fail at low energies

- ▶ Large N_c limit
- Chiral perturbation theory
- ► Lattice QCD

QCD has a very simple Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = -rac{1}{4g^2}\mathsf{Tr}[F_{\mu
u}F^{\mu
u}] + \sum_f \overline{q}_f(i\gamma_\mu D^\mu - m_f)q_f$$

Asymptotic freedom ----> Perturbative methods fail at low energies

$$N_{\rm f} = 4$$

$$(m_u = m_d = m_s = m_c)$$

$$\longrightarrow$$
Degenerate mesons plons
$$M_{\pi} = M_{K} = M_{D} = M_{\eta}$$
7 scattering channels

 $15 \otimes 15 = 84(SS) \oplus 45 \oplus 45 \oplus 20(AA) \oplus 15 \oplus 15 \oplus 1$ $\pi^{+}\pi^{+} \qquad D_{s}^{+}\pi^{+} - D^{+}K^{+}$

	Large N _c	ChPT	Lattice QCD	Conclusions
	•0			
Large N _c	limit			

	Large N _C	ChPT	Lattice QCD	Conclusions
	•0			
Large $N_{\rm c}$	limit			

We can characterize the N_c and N_f scaling of diagrams at large N_c

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

	Large N _C	ChPT	Lattice QCD	Conclusions
	•0			
Large $N_{\rm c}$	limit			

We can characterize the N_c and N_f scaling of diagrams at large N_c

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

	Large N _C	ChPT	Lattice QCD	Conclusions
	••			
Large $N_{\rm c}$	limit			

We can characterize the N_c and N_f scaling of diagrams at large N_c

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

 $a, b \sim \mathcal{O}(1)$ constants

	Large N _C	ChPT	Lattice QCD	Conclusions
	••			
Large $N_{\rm c}$	limit			

We can characterize the N_c and N_f scaling of diagrams at large N_c

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

 $a, b \sim \mathcal{O}(1)$ constants

	Large N _C	ChPT	Lattice QCD	Conclusions
	•0			
Large $N_{\rm c}$	limit			

Large \textit{N}_{c} ($\textit{N}_{c} \rightarrow \infty,~\textit{N}_{f} = \text{const})$ keeps non-perturbative features of QCD

We can characterize the N_c and N_f scaling of diagrams at large N_c

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

 $a, b \sim \mathcal{O}(1)$ constants

	Large N _C	ChPT	Lattice QCD	Conclusions
	•0			
Large $N_{\rm c}$	limit			

Large \textit{N}_{c} ($\textit{N}_{c} \rightarrow \infty,~\textit{N}_{f} = \text{const})$ keeps non-perturbative features of QCD

We can characterize the N_c and N_f scaling of diagrams at large N_c

- Color loops $\sim N_{\rm c}$
- Vertex $\sim g \sim N_{\rm c}^{-1/2}$
- Internal quark loops $\sim N_{\rm f}$

Single pion:

Introduction ChPT Lattice QCD Conclusions of Scattering at large N_c

с, с

 $c, d, e, f \sim \mathcal{O}(1)$ constants

Two pions:

Scattering amplitude in the SS and AA channels:

$$\mathcal{M}^{SS,AA} = \mp \frac{1}{N_{c}} \left(\tilde{a} + \tilde{b} \frac{N_{f}}{N_{c}} \pm \tilde{c} \frac{1}{N_{c}} \right) + \mathcal{O}(N_{c}^{-3})$$

Same scaling for other scattering observables

Scattering amplitude in the SS and AA channels:

$$\mathcal{M}^{SS,AA} = \mp \frac{1}{N_{c}} \left(\tilde{a} + \tilde{b} \frac{N_{f}}{N_{c}} \pm \frac{\tilde{c}}{N_{c}} \frac{1}{N_{c}} \right) + \mathcal{O}(N_{c}^{-3})$$

Same scaling for other scattering observables

ChPT describes QCD in terms of pseudo-Goldstone bosons (pions)

$$\phi = \begin{pmatrix} \pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} & \sqrt{2}D^{0} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}K^{0} & \sqrt{2}D^{+} \\ \sqrt{2}K^{-} & \sqrt{2}\bar{K}^{0} & -\frac{2\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}D_{s}^{+} \\ \sqrt{2}\bar{D}^{0} & \sqrt{2}D^{-} & \sqrt{2}D_{s}^{-} & -\frac{3\eta_{c}}{\sqrt{6}} \end{pmatrix}$$
 (N_f = 4)

Introduction OO Chiral Perturbation Theory (ChPT)

ChPT describes QCD in terms of pseudo-Goldstone bosons (pions)

$$\phi = \begin{pmatrix} \pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} & \sqrt{2}D^{0} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}K^{0} & \sqrt{2}D^{+} \\ \sqrt{2}K^{-} & \sqrt{2}\bar{K}^{0} & -\frac{2\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}D^{+}_{s} \\ \sqrt{2}\bar{D}^{0} & \sqrt{2}D^{-} & \sqrt{2}D^{-}_{s} & -\frac{3\eta_{c}}{\sqrt{6}} \end{pmatrix}$$
 (N_f = 4)

Most general lagrangian with QCD symmetries

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \operatorname{Tr}[\partial_{\mu} U \partial^{\mu} U^{\dagger}] + \frac{F^{2} B_{0}}{2} \operatorname{Tr}[\chi U^{\dagger} + \chi^{\dagger} U] \quad (2 \text{ LECs}) \quad \begin{array}{c} F^{2} \sim \mathcal{O}(N_{c}) \\ B_{0}, M_{\pi} \sim \mathcal{O}(1) \\ \mathcal{L}_{4} = \sum_{i=0}^{12} L_{i} O_{i} \qquad L_{i} \sim \mathcal{O}(N_{c}) \text{ or } \mathcal{O}(1) \quad (13 \text{ LECs}) \end{array}$$

The η^\prime needs to be included

$$M_{\eta'}^2 = M_{\pi}^2 + \frac{2N_{\rm f}\chi_{\rm top}}{F_{\pi}^2} \xrightarrow{F_{\pi}^2 \sim \mathcal{O}(N_{\rm c})}_{\text{large } N_{\rm c}} M_{\pi}^2 + \dots \qquad [\text{Witten-Veneciano}]$$

Large N_c or $U(N_f)$ ChPT [Kaiser, Leutwyler 2000]:

• Include η' in pion matrix

 $\phi|_{\mathsf{U}(N_{\mathsf{f}})} = \phi|_{\mathsf{SU}(N_{\mathsf{f}})} + \eta' \mathbb{1}$

• Leutwyler counting scheme

 $\mathcal{O}(m_q) \sim \mathcal{O}(M_\pi^2) \sim \mathcal{O}(k^2) \sim \mathcal{O}(N_c^{-1})$

$\begin{array}{c|c} \mbox{Introduction} & \mbox{Large } N_{\rm C} & \mbox{ChPT} & \mbox{Lattice QCD} & \mbox{Conclusions} \\ \hline \mbox{σ} & \mbox{$\sigma$$

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_0^{SS} = -\frac{M_{\pi}^2}{16\pi F_{\pi}^2} \int \propto -\frac{1}{N_c}$$

$$M_{\pi}a_0^{AA} = +\frac{M_{\pi}^2}{16\pi F_{\pi}^2} \int \propto +\frac{1}{N_c}$$

Introduction Large $N_{\rm C}$ ChPT Lattice QCD Conclusions of $\pi\pi$ scattering in ChPT

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k\cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto -\frac{1}{N_{c}} \qquad M_{\pi}a_{0}^{AA} = +\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto +\frac{1}{N_{c}}$$

 $\pi\pi$ scattering at NNLO in large N_c ChPT [JBB et al. 2022]

$$M_{\pi}a_{0}^{SS,AA} = \mp \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} + f_{SS,AA}(M_{\pi}, F_{\pi}, L_{SS,AA}, K_{SS,AA})$$

Introduction Large N_c ChPT Lattice QCD Conclusions of $\pi\pi$ scattering in ChPT

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto -\frac{1}{N_{c}} \qquad M_{\pi}a_{0}^{AA} = +\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto +\frac{1}{N_{c}}$$

 $\pi\pi$ scattering at NNLO in large N_c ChPT [JBB et al. 2022]

$$M_{\pi}a_{0}^{SS,AA} = \mp \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} + f_{SS,AA}(M_{\pi}, F_{\pi}, L_{SS,AA}, K_{SS,AA})$$

Large
$$N_c \longrightarrow L_{SS} = \underset{L_{AA}}{N_c L_{c}^{(0)} + \underset{Same sign}{N_f L_c^{(1)}} - \underset{C_{a}^{(1)}}{L_{a}} + \mathcal{O}(N_c^{-1})}$$

	Large N _c	ChPT	Lattice QCD	Conclusions
			000	
QCD in t	he lattice			

Lattice QCD is a first-principles approach to the strong interaction

$$\langle O[\phi]
angle = rac{1}{Z} \int \mathcal{D}\phi \, \mathrm{e}^{i \mathcal{S}[\phi]} O[\phi]$$

 $\phi \equiv$ quark, gluons $S[\phi] \equiv$ QCD action $O[\phi] \equiv$ observable

Lattice QCD is a first-principles approach to the strong interaction

Lattice QCD is a first-principles approach to the strong interaction

Allows to simulate QCD for varying N_c , M_{π} , ...

IntroductionLarge N_c ChPTLattice QCDConclusionsOOOOOOOOOOO

Meson-meson scattering in the lattice

Particle scattering cannot be directly studied in the lattice

Scattering Real-time process Infinite volume

Asymptotic states

Lattice QCD

Euclidean time Finite volume Stationary states
 Introduction
 Large N_c
 ChPT
 Lattice QCD
 Conclusions

 OO
 OO
 OOO
 OOO
 OOO
 O

Meson-meson scattering in the lattice

Particle scattering can be indirectly studied in the lattice

Stationary states

Finite-volume spectrum

Meson-meson scattering in the lattice

Particle scattering can be indirectly studied in the lattice

Particle scattering can be indirectly studied in the lattice

Two particles in s-wave:

$$k \cot \delta_0 = \frac{2}{\gamma L \pi^{1/2}} \mathcal{Z}_{00}^{\boldsymbol{P}} \left(\frac{kL}{2\pi} \right) \xrightarrow{\text{Low}} E_0 - 2m = -\frac{4\pi a_0}{M_{\pi} L^3} + \dots$$

 $\begin{array}{c|c} \text{Introduction} & & \text{ChPT} & \text{Lattice QCD} & & \text{Constrained of the second second$

Chiral and N_c fit of both channels to U(4) ChPT [JBB et al. 2022],

$$\frac{L_{SS,AA}}{N_c} \times 10^3 = -0.02(8) - 0.01(5) \frac{N_f}{N_c} \mp 1.76(20) \frac{1}{N_c}$$

Jorge Baeza-Ballesteros

We can study the non-perturbative regime of QCD combining the large N_c limit, ChPT and lattice QCD

> We are studying the large N_c scaling of scattering observables

> We have found large **subleading** N_c effects

We can study the non-perturbative regime of QCD combining the large N_c limit, ChPT and lattice QCD

- > We are studying the large N_c scaling of scattering observables
- > We have found large **subleading** N_c effects

Ongoing work: possible tetraquark resonance in AA channel

We can study the non-perturbative regime of QCD combining the large N_c limit, ChPT and lattice QCD

- > We are studying the large N_c scaling of scattering observables
- > We have found large subleading N_c effects

Ongoing work: possible tetraquark resonance in AA channel

Thank you for your attention!