Introduction

NU at DUNE ND

Summary

Leptonic neutral-current probes in a short-distance DUNE-like setup

Based on 2402.00114 by SCCh, O. G. Miranda and J.W.F. Valle Phys. Rev. D 109, 115007

Salvador Centelles Chuliá

Erice 2024, Italy

16/06/2024

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Salvador Centelles Chuliá

1 Introduction

- 2 Non-unitarity formalism
- 3 NU at DUNE ND
- 4 Summary

Salvador Centelles Chuliá

Erice 2024, Italy

Image: A math a math

Summary

1 Introduction

Neutrino masses Observational footprints

- 2 Non-unitarity formalism
- **3** NU at DUNE ND
- 4 Summary

5 Backup

Salvador Centelles Chuliá

Erice 2024,	ltaly

イロト イヨト イヨト イヨト

э

Summary

1 Introduction Neutrino masses

Observational footprints

2 Non-unitarity formalism

3 NU at DUNE ND

5 Backup

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Image: A mathematical states and a mathem

Introduction ○○●○○	Non-unitarity formalism	NU at DUNE ND	Summary 000	Backup 000000000000000000000000000000000000
Neutrino	masses			

- Neutrino oscillations entering the precision (<1%) era. Simplest explanation for the L/E profile are massive neutrinos.
- For now, the neutrino mass mechanism is a mistery:
 - Tree level, radiative, extra dimensional origin...?
 - The scale(s) of relevant NP
 - Neutrino nature: Dirac or Majorana
 - Lepton number conservation/violation

• Neutrino mixing with new states could be the window to NP

Summary

1 Introduction

Neutrino masses Observational footprints

2 Non-unitarity formalism

3 NU at DUNE ND

5 Backup

iá	Chuliá	es	Centel	lor	alvad	5
----	--------	----	--------	-----	-------	---

Leptonic neutral-current probes in a short-distance DUNE-like setup

Image: A matrix

< E

- Let us assume that neutrinos mix with some new **heavy** gauge singlet states. This mixing can be naturally % level in low scale seesaw frameworks!
- Observational footprints are mainly
 - Collider direct production of m_{ν} mediators
 - cLFV (paradigmatically but not only $\mu^-
 ightarrow e^- \gamma)$
 - Non-standard effects in neutrino propagation
- None of these observations would be a statement on neutrino nature! See e.g. [1][2]

^[1]J. Bernabeu et al. "Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model". In: Phys. Lett. B 187 (1987), pp. 303–308. DOI: 10.1016/0370-2693(87)91100-2.

Summary

Introduction

2 Non-unitarity formalism

Basic formulation Neutrino scattering on a lepton target at zero distance (2402.00114)

3 NU at DUNE ND

4 Summary

_____ Erice 2024, Italy

- ∢ ≣ →

Image: A matrix

Salvador Centelles Chuliá

Summary

1 Introduction

2 Non-unitarity formalism Basic formulation

Neutrino scattering on a lepton target at zero distance (2402.00114)

3 NU at DUNE ND

4 Summary

Salvador Centelles Chuliá

Image: A matrix

< E

- 3 active neutrinos mix with *m* new (heavy) states
- The unitary mixing matrix is $(3 + m) \times (3 + m)$
- The upper 3 rows form a rectangular matrix K which characterizes the $\ell_{\alpha} W \nu_i$ interactions. See Concha's talk!

$$K = \begin{pmatrix} N & S \end{pmatrix}$$

$$K \, K^{\dagger} = 1_{3 imes 3}$$

Image: A matrix

• The Z boson interaction is characterized by the $(3 + m) \times (3 + m)$ matrix $P = K^{\dagger} K \neq 1$

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

 If E ≪ M only the first 3 × 3 block of K and P can play a role, N and N[†]N, respectively.

Salvador Centelles Chuliá

Important phenomenological consequences!

- CC can change flavour even at zero distance.
- NC is no longer diagonal.
- Observables at zero-distance depend on $(N^{\dagger}N)$. In the unitary limit this is the identity.
- Naive guess: Number of neutrino events in a given experiment is reduced compared to the unitary case. Not true!

Erice 2024, Italy

Basic formulation

Introduction

- N plays a central role in this setup
- We parametrize N as [3]

Non-unitarity formalism

$$N = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{31} & \alpha_{33} \end{pmatrix} \cdot U$$

Summary

Backup

• In the unitary limit, N = I and U is the unitary matrix responsible for the standard oscillations.

NU at DUNE ND

- Advantage of this parametrization: very clean theoretical interpretation in terms of mixing angles.
- The order of each parameter in the seesaw expansion is

$$\alpha_{ii}^2 \sim 1 - \varepsilon^2; \quad |\alpha_{ij}|^2 \sim \varepsilon^4$$

 [3]F. J. Escrihuela et al. "On the description of nonunitary neutrino mixing". In: Phys. Rev. D 92.5 (2015). [Erratum: Phys.Rev.D 93, 119905 (2016)], p. 053009. DOI: 10.1103/PhysRevD.92.053009. arXiv: 1503.08879 [hep-ph].

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

 □ >

Salvador Centelles Chuliá

Summary

Introduction

2 Non-unitarity formalism Basic formulation Neutrino scattering on a lepton target at zero distance (2402.00114)

3 NU at DUNE ND

4 Summary

Salvador Centelles Chuliá

Erice 2024, Italy

Elastic scattering

Non-unitarity formalism

 We now consider the family of processes ν_α + e⁻ → ν_j + e⁻ and ν
_α + e⁻ → ν
_j + e⁻ at zero distance

Summary

Backup

NU at DUNE ND

For concreteness, let's focus on the incoming muon neutrino case.

In the SM the cross section is given by

$$\left(\frac{d\sigma}{dT}\right)^{\mathsf{SM}} = \frac{2G_{\mu}^2m_e}{\pi} \left(g_L^2 + g_R^2\left(1 - \frac{T}{E\nu}\right)^2 - g_Lg_R\frac{m_eT}{E_{\nu}^2}\right)$$

And in the presence of non-unitarity

$$\left(\frac{d\sigma}{dT}\right)^{\mathsf{NU}} = \frac{\mathcal{P}_{\mu e}^{\mathsf{NC}}}{(NN^{\dagger})_{ee}(NN^{\dagger})_{\mu\mu}} \left(\frac{d\sigma}{dT}\right)^{\mathsf{SM}} + \frac{2m_e G_{\mu}^2}{\pi} \frac{\mathcal{R}e\left[\mathcal{P}_{\mu e}^{\mathsf{int}}\right]}{(NN^{\dagger})_{ee}(NN^{\dagger})_{\mu\mu}} \left\{\frac{\mathcal{P}_{\mu e}^{\mathsf{CC}}}{\mathcal{R}e\left[\mathcal{P}_{\mu e}^{\mathsf{int}}\right]} + 2g_L - g_R \frac{m_e T}{E_{\nu}^2}\right\}$$

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

< < >> < <</>

- The energy spectrum of the electron is modified!
- This feature is not shared by Cevens (pure NC) or inelastic scattering on nucleus (pure CC).
- However, this difference would be extremely hard to observe.
- It is also theoretically suppressed. Indeed, performing the the seesaw expansion and keeping only terms of $\mathcal{O}(\varepsilon)^2$ we find

$$\left(\frac{d\sigma}{dT}\right)^{\rm NU} \approx \left(2\alpha_{22}^2 - \alpha_{11}^2\right) \left(\frac{d\sigma}{dT}\right)^{\rm SM} + \mathcal{O}\left(\varepsilon^4\right)$$

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

- If $E_{\nu}>$ 10 GeV we also have the purely CC process $\nu_{lpha}+e^-
 ightarrow
 u_j+\mu^-$
- For incoming μ neutrinos, the probability factor is given by

$$P_{\alpha\mu} = (N^{\dagger}N)_{ee}(N^{\dagger}N)_{\alpha\mu}(N^{\dagger}N)_{\mu\alpha}$$

$$\begin{aligned} \mathcal{P}_{\mu\mu} &\approx 2\alpha_{22}^2 + \alpha_{11}^2 - 2 \sim 1 - \mathcal{O}\left(\varepsilon^2\right) \\ \sigma &\approx \mathcal{P}_{\mu\mu}\frac{G_F^2}{\pi}\left(2\mathcal{E}_{\nu}m_e - m_{\mu}^2\right) \end{aligned}$$

Image: A matrix

Erice 2024, Italy

Salvador Centelles Chuliá

- $u_{\mu} + e
 ightarrow
 u_{j} + e$, mainly NC (at first order in seesaw expansion)
- $u_{\mu} + e \rightarrow \nu_j + \mu$, purely CC
- Final number of events could be bigger or smaller than the expected in the SM (due to the redefinition of G_F):

$$e^-$$
 events, NC: $rac{\#}{\#_{SM}} \approx 2lpha_{22}^2 - lpha_{11}^2 \sim 1 \pm \mathcal{O}(\varepsilon^2)$
 μ^- events, CC: $rac{\#}{\#_{SM}} \approx lpha_{22}^2 \sim 1 - \mathcal{O}(\varepsilon^2)$

Image: A matrix

Erice 2024, Italy

Salvador Centelles Chuliá

Summary

1 Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

Disclaimer Analysis and sensitivity prospects

4 Summary

5 Backup

Salvador Centelles	Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

< 同 → < 三

Summary

1 Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

Disclaimer

Analysis and sensitivity prospects

4 Summary

5 Backup

Salvador Centelles Chuliá	
Leptonic neutral-current probes in a short-distance DUNE-like setup	

Erice 2024, Italy

・ロト ・回ト ・ヨト

We will now analyze how the Near Detector (ND) of DUNE can constraint the NU parameters. However:

- Neutrino scattering with leptons has lower statistics compared to inelastic scattering with nucleus (way lower cross section)
- The experiment is not optimized to search for scattering on leptons
- Big flux uncertainties
- Constraints on NU from EW precision measurements will be stronger than those from neutrino physics constraints.

Erice 2024. Italy

- It is generally a good idea to find and explore complementary probes of a given phenomena
- Background under control (it is a cleaner process)
- Relatively less analyzed process compared to nucleus scattering

1 Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

Disclaimer Analysis and sensitivity prospects

4 Summary

5 Backup

Salvador	Centelles Chuliá	

Leptonic neutral-current probes in a short-distance DUNE-like setup

Image: A math a math

Introduction	Non-unitarity formalism	NU at DUNE ND	Summary	Backup
00000		○○○○○●○○	000	000000000000000000000000000000000000
Analysis				

- We compute the expected number of events in the SM for each flavour component of the flux (3.5 years per mode).
- We compute the NU (global) factors at order ε^2 .
- We extract the sensitivity on NU parameters.
- We compare them with current neutrino limits.

DUNE-like near detector, $\sigma = \sigma_{stat}$

NU at DUNE ND ○○○○○○○● Summary

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

< < >> < <</>

1 Introduction

- 2 Non-unitarity formalism
- **3** NU at DUNE ND
- 4 Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

	alvado	or Centelles	Chuliá	
--	--------	--------------	--------	--

Introduction	Non-unitarity formalism	NU at DUNE ND	Summary	Backup
00000	00000000000		0●0	000000000000000000000000000000000000
Take hon	ne ideas			

- Low scale seesaws: A well motivated and broad class of models leading to rich phenomenology. Non-unitarity effects can be at the % level.
- We have studied the effect of NU through the leptonic neutral current for the first time.
- The expected sensitivity will be competitive and complementary with other oscillation experiments (in particular on α²₁₁).

Erice 2024. Italy

Summary ○○●

Thanks!

э Erice 2024, Italy

・ロン ・日 ・ ・ ヨン・

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

30 / 58

2

Summary 000

1 Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

α parametrization Neutrino limits SM prediction Non-neutrino constraints Background Indirect effects

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

α parametrization

Neutrino limits SM prediction Non-neutrino constraints Background Indirect effects

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

- A unitary matrix of order *n* can be parametrized with $\frac{n(n-1)}{2}$ angles and n(n+1) phases.
 - The complex rotation ω_{ij} has a mixing angle in the plane i j and a phase.
 - An (unphysical) diagonal matrix of phases times all the possible ω (in some order) parametrizes any unitary matrix

Parametrization of lphas in terms of mixing angles

- We can choose the ordering to be (NS \times NS)(S \times NS)($\omega_{23}\omega_{13}\omega_{12})$
- We identify the right hand side with the 'standard' mixing
- The first block cannot affect the 'active-active' 3×3 block
- The second block we subdivide in products of $\omega_{3j}\omega_{2j}\omega_{1j}$, which is lower tringular
- And a product of lower triangular matrices is also lower triangular
- diagonal entries are simply multiplications of cosines while off diagonal elements are proportional to sines (but are more complicated and include phases)

Erice 2024. Italy

• As a simple example in the 3 + 1 scheme we get

•
$$\alpha_{ii} = c_{i4}$$

•
$$\alpha_{ij} = s_{i4}s_{j4}e^{i(\phi_{i4}-\phi_{j4})}$$

< < >> < <</>

Salvador Centelles Chuliá

Summary

Backup

Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

 α parametrization

Neutrino limits

SM prediction Non-neutrino constraints Background Indirect effects

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

- $\nu_{\alpha} + N \rightarrow \nu_j + N$
- The COHERENT collaboration already detected the coherent scattering off nucleons in 2017 [4]
- Several experiments, including Coνus in Heidelberg [5]
- For future sensitivity analysis see e.g. [6]

^[4]D. Akimov et al. "Observation of Coherent Elastic Neutrino-Nucleus Scattering". In: Science 357.6356 (2017), pp. 1123-1126. DOI: 10.1126/science.aao0990. arXiv: 1708.01294 [nucl-ex].

^[5]H. Bonet et al. "Novel constraints on neutrino physics beyond the standard model from the CONUS experiment". In: JHEP 05 (2022), p. 085. DOI: 10.1007/JHEP05(2022)085. arXiv: 2110.02174 [hep-ph].

Introduction 00000	Non-unitarity formalism	NU at DUNE ND	Summary 000	Backup 00000 00 00000000000000000000000000000
Neutrino	limits			

- See the analysis in[7]
- Combines data from long (NOvA, T2K, MINOS) and short baseline (NOMAD, NuTeV) experiments
- At 90% CL:

$$\begin{aligned} 1 - \alpha_{11}^2 &\le 6 \times 10^{-2} \\ 1 - \alpha_{22}^2 &\le 1 \times 10^{-2}. \end{aligned}$$

[7]D. V. Forero et al. "Nonunitary neutrino mixing in short and long-baseline experiments". In: Phys. Rev. D 104.7 (2021), p. 075030. DOI: 10.1103/PhysRevD.104.075030. arXivi 2103.01998 [heg-ph] i きい 夏 - つくつ

Salvador Centelles Chuliá

Erice 2024, Italy

Summary

Backup

Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

 α parametrization Neutrino limits

SM prediction

Non-neutrino constraints Background Indirect effects

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Introduction 00000 Non-unitarity formalism

NU at DUNE ND

Summary

Backup

Number of events in the SM and probability factors

\mathcal{N}_{U}	$\nu \mod$	le	$\bar{\nu} \mod$	е	$\mathcal{N}_{\mathrm{NU}}/\mathcal{N}_{\mathrm{U}}$	Seesaw orde	r Main contribution
$\nu_a + e^- \rightarrow \nu_j + e^-$	\mathbf{events}	σ	\mathbf{events}	σ	${\cal P}G_F^2/G_\mu^2$		
$ u_e$	2.800	80	1.530	50	$2\alpha_{11}^2 - \alpha_{22}^2$	$1 \pm \mathcal{O}\left(\varepsilon^2\right)$	NC + CC
$ u_{\mu}$	31.400	700	5.800	100	$2\alpha_{22}^2 - \alpha_{11}^2$	$1 \pm \mathcal{O}\left(\varepsilon^2\right)$	NC
$ar{ u}_e$	430	20	780	30	$2\alpha_{11}^2 - \alpha_{22}^2$	$1 \pm O(\varepsilon^2)$	NC + CC
$ar u_\mu$	3.200	80	20.000 4	400	$2\alpha_{22}^2 - \alpha_{11}^2$	$1 \pm O\left(\varepsilon^2\right)$	NC
total	37.800	800	28.000	500			
\mathcal{N}_{U}	ν mo	de	$\bar{\nu}$ mo	de	$\mathcal{N}_{\mathrm{NU}}/\mathcal{N}_{\mathrm{U}}$	Seesaw order 1	Main contribution
$\mathcal{N}_{\mathrm{U}} \\ \nu_a + e^- \to \nu_j + \mu^-$	$\nu \mod \mathbf{events}$	de σ	$\bar{\nu} \mod \mathbf{events}$	de σ	${\cal N}_{ m NU}/{\cal N}_{ m U} onumber \ {\cal P}G_F^2/G_\mu^2$	Seesaw order 1	Main contribution
$\frac{\mathcal{N}_{\mathrm{U}}}{\nu_a + e^- \to \nu_j + \mu^-}$ $\frac{\nu_e}{\nu_e}$	$\nu \mod \frac{\nu}{0}$	de σ 0	$\bar{\nu} \mod \mathbf{events}$	de σ 0	$\frac{\mathcal{N}_{\rm NU}/\mathcal{N}_{\rm U}}{\mathcal{P} G_F^2/G_\mu^2}$ $ \alpha_{21} ^2$	Seesaw order 1 $\mathcal{O}\left(\varepsilon^{4}\right)$	$\frac{\text{Main contribution}}{\mathcal{O}\left(\varepsilon^{4}\right)}$
$ \frac{\mathcal{N}_{\mathrm{U}}}{\nu_{a} + e^{-} \rightarrow \nu_{j} + \mu^{-}} $ $ \frac{\nu_{e}}{\nu_{\mu}} $	ν mo events 0 17.900	de σ 0 400	 ν mo events 0 14.200 	de <i>σ</i> 	$\frac{\mathcal{N}_{\rm NU}/\mathcal{N}_{\rm U}}{\mathcal{P} G_F^2/G_\mu^2} \\ \frac{ \alpha_{21} ^2}{\alpha_{22}^2}$	Seesaw order $\begin{bmatrix} \mathcal{O}(\varepsilon^4) \\ 1 - \mathcal{O}(\varepsilon^2) \end{bmatrix}$	$ \begin{array}{c} \text{Main contribution} \\ \hline \mathcal{O}\left(\varepsilon^4\right) \\ \hline \text{CC} \end{array} $
$ \frac{\mathcal{N}_{\mathrm{U}}}{\nu_{a} + e^{-} \rightarrow \nu_{j} + \mu^{-}} $ $ \frac{\nu_{e}}{\nu_{\mu}} $ $ \bar{\nu}_{e}$	ν mo events 0 17.900 380	de σ 0 400 20	 ν mo events 0 14.200 230 	de σ 0 300 20	$\frac{\mathcal{N}_{\rm NU}/\mathcal{N}_{\rm U}}{\mathcal{P} G_F^2/G_\mu^2}$ $\frac{ \alpha_{21} ^2}{\alpha_{22}^2}$ $\frac{\alpha_{11}^2}{\alpha_{11}^2}$	Seesaw order 1 $\mathcal{O}(\varepsilon^4)$ $1 - \mathcal{O}(\varepsilon^2)$ $1 - \mathcal{O}(\varepsilon^2)$	$\begin{array}{c} \text{Main contribution} \\ \hline \\ \mathcal{O}\left(\varepsilon^{4}\right) \\ \\ \text{CC} \\ \\ \text{CC} \\ \\ \end{array}$
$ \begin{array}{c} \mathcal{N}_{\mathrm{U}} \\ \nu_{a} + e^{-} \rightarrow \nu_{j} + \mu^{-} \\ \hline \nu_{e} \\ \bar{\nu}_{e} \\ \bar{\nu}_{\mu} \\ \hline \bar{\nu}_{\mu} \end{array} $	ν mo events 0 17.900 380 0	de σ 10 400 20 0	$\bar{\nu} \mod \frac{\bar{\nu}}{230}$	de σ 300 20 0	$\frac{\mathcal{N}_{\rm NU}/\mathcal{N}_{\rm U}}{\mathcal{P} G_F^2/G_\mu^2} \\ \frac{ \alpha_{21} ^2}{\alpha_{22}^2} \\ \alpha_{11}^2 \\ \alpha_{21} ^2 \\ \end{array}$	Seesaw order 1 $\mathcal{O}(\varepsilon^4)$ $1 - \mathcal{O}(\varepsilon^2)$ $1 - \mathcal{O}(\varepsilon^2)$ $\mathcal{O}(\varepsilon^4)$	$\begin{array}{c} \text{Main contribution} \\ \hline \mathcal{O}\left(\varepsilon^{4}\right) \\ \hline \text{CC} \\ \text{CC} \\ \text{CC} \\ \mathcal{O}\left(\varepsilon^{4}\right) \end{array}$

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Image: A math a math

Summary 000

1 Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

 α parametrization Neutrino limits SM prediction

Non-neutrino constraints

Background Indirect effects

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

< A

Comparison with existing constraints

- Oscillations
 - Long baseline experiments
 - Short baseline (zero distance)
- Lepton flavour universality
 - π & K decays into μ^- and e^-
 - τ^- decays (hadrons or leptons) \leftarrow function of (α_{33})
 - eta decays and CKM unitarity 🎇
- EW precision observables
 - *W* mass, *s_W*, Γ_Z...
 - CDF-II W mass [8]

[8]Mattias Blennow et al. "Right-handed neutrinos and the CDF || anomaly". In: Phys. Rev. D 106.7 (2022), p. 073005. DOI: 10.1103/PhysRevD.106.073005. arXiv: 2204.04559 [hep@ph]. < ≧ → < ≧ → < ≧ → < <

Salvador Centelles Chuliá

Erice 2024, Italy

Introduction 00000	Non-unitarity formalism	NU at DUNE ND	Summary 000	Backup ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
LFU				

- See [9] for a nice update
- We can translate the decay rates of pions (or Kaons) to electrons and muons into couplings with the W. The experimental result

$$\left(\frac{g_e}{g_{\mu}}\right)^2 = 0.998 \pm 0.002$$

• In the SM this ratio is 1. In the presence of non-unitarity

$$\left(\frac{g_e}{g_{\mu}}\right)^2 = 1 + \alpha_{11}^2 - \alpha_{22}^2$$

 [9]Douglas Bryman et al. "Testing Lepton Flavor Universality with Pion, Kaon, Tau, and Beta Decays".

 In: Ann. Rev. Nucl. Part. Sci. 72 (2022), pp. 69-91. DOI: 10.1146/annur.ev-nucl-110121-051223. arXiv:

 2111.05338 [hep-ph].

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

• We can also compare the effective coupling of β and μ decays. In the SM

$$\left(rac{G_eta}{G_\mu}
ight)^2 = \sum_i |V_{ui}|^2 = 1$$

• Different measurements of nuclear processes give

$$\sum_{i} |V_{ui}|^2 = 1 - (19.5 \pm 5.3) \times 10^{-4}$$

• Known as the **Cabibbo anomaly**. This anomaly only gets worse in the presence of (leptonic) non-unitarity

$$\left(\frac{\textit{G}_{\beta}}{\textit{G}_{\mu}}\right)^2 = 2 - \alpha_{22}^2 > 1$$

Erice 2024, Italy

Leptonic neutral-current probes in a short-distance DUNE-like setup

 Including all the LFU and EW precision measurements gives a much stronger constraints than the ones obtained from DUNE-PRISM or oscillations [10]

> 95% CL: $1 - \alpha_{11}^2 \le 2 \times 10^{-3}$ $1 - \alpha_{22}^2 \le 2 \times 10^{-4}$

 Caveat: The constraints are pushed towards zero due to the Cabibbo anomaly. Would be interested in seeing a similar analysis excluding the CKM unitarity test.

^[10] Iattias Blennow et al. "Bounds on lepton non-unitarity and heavy neutrino mixing". In: JHEP 08 (2023), p. 030. DOI: 10.1007/JHEP08(2023)030. arXiv: 2306.01040 [hep-ph]. « @ » « ≧ » « ≧ » ≧ → Q @ Salvador Centelles Chuliá Erice 2024, Italy

Summary

Backup

Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

 α parametrization Neutrino limits SM prediction Non-neutrino constraints

Background

Indirect effects

High and low scale seesaw

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Introduction

NU at DUNE ND

Summary

Background reduction

We can take advantage of the fact that the electron scattering will be mainly forward. See for example[11]

[11]. Zazueta et al. "Improved constraint on the MINER ν A medium energy neutrino flux using $\nu^-e^- \rightarrow \nu^-e^-$ data". In: *Phys. Rev. D* 107.1 (2023), p. 012001. DOI: 10.1103/PhysRevD.107.012001. arXiv: 2209.05540 [hep-ex].

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Summary

Backup

Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

 α parametrization Neutrino limits SM prediction Non-neutrino constraints Background

Indirect effects

High and low scale seesaws

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Redefinition of G_F

Non-unitarity formalism

Introduction

- G_F is measured through the μ^- decay.
- Lepton non-unitarity modifies this decay. The effective muon decay G_{μ} is related to the 'real' G_F by

Summary

Backup

NU at DUNE ND

Salvador Centelles Chuliá

Introduction 00000 NU at DUNE ND

Summary

Backup

Observational footprints

• Typically suppressed by the 'active-heavy' mixing.

Erice 2024, Italy

Leptonic neutral-current probes in a short-distance DUNE-like setup

Salvador Centelles Chuliá

Summary

Backup

Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

α parametrization Neutrino limits SM prediction Non-neutrino constraints Background Indirect effects

High and low scale seesaws

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

• The type-I seesaw is a paradigmatic example of a high scale seesaw

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Image: A matrix

$$M_{\nu} = \begin{pmatrix} 0 & Y v \\ Y^{T} v & M \end{pmatrix}, \ U^{T} M_{\nu} U = m_{d}, \ U = \begin{pmatrix} N & S \\ X & Y \end{pmatrix}$$

- N and S are the 'active-active' and 'active-sterile' mixings. By construction $N^{\dagger}N = 1 S^{\dagger}S$.
- In the seesaw expansion we loosely define the parameter $\varepsilon \sim O(Y v/M)$ and diagonalize perturbatively, finding

$$m_{\nu} = v^2 Y^T M^{-1} Y, \quad S^* = Y v M^{-1} V \sim \varepsilon, \quad \varepsilon^2 \sim O(m\nu/M)$$

< < >> < <</>

Salvador Centelles Chuliá

• The inverse seesaw is a paradigmatic example of a low scale seesaw.

Erice 2024, Italy

< < >> < <</>

Introduction	Non-unitarity formalism	NU at DUNE ND	Summary	Backup
00000	00000000000		000	000000000000000000000000000000000000
Inverse seesaw				

• Introduces a new scale $\mu \ll \Lambda_{\rm EW}$

$$M_{\nu} = \begin{pmatrix} 0 & Y v & 0 \\ Y^{T} v & \mu' & M \\ 0 & M^{T} & \mu \end{pmatrix}$$

• In the seesaw expansion (one gen)

$$m_{\nu} = rac{Y^2 v^2}{M^2} \mu, \quad S = \begin{pmatrix} rac{Y v}{M^2} \mu & rac{Y v}{M} \end{pmatrix} \sim \begin{pmatrix} rac{m_{
u}}{Y v} & arepsilon \end{pmatrix}$$

• The second component can be % level, even if $m_
u o 0$

Erice 2024, Italy

Image: A mathematical states and a mathem

Salvador Centelles Chuliá

Summary

Backup

Introduction

2 Non-unitarity formalism

3 NU at DUNE ND

4 Summary

6 Backup

α parametrization Neutrino limits SM prediction Non-neutrino constraints Background Indirect effects

Salvador Centelles Chuliá

Leptonic neutral-current probes in a short-distance DUNE-like setup

Erice 2024, Italy

Introduction

Non-unitarity formalism

NU at DUNE ND

Summary

Backup

The DUNE experiment

- DUNE (Deep Underground Neutrino Experiment) is an ambitious neutrino experiment under construction. Will determine the mass ordering and improve precision on θ_{23} , δ_{CP} and θ_{13} [12]
- Two beam modes (neutrino/antineutrino), mainly u_{μ} or $ar{
 u}_{\mu}$

[12]. Abi et al. "Long-baseline neutrino oscillation physics potential of the DUNE experiment". In: Eur. Phys. J. C 80.10 (2020), p. 978. DOI: 10.1140/epjc/s10052-020-08456-四. arXi傍 2006.36043 [hep-ex] のへつ

Salvador Centelles Chuliá

Erice 2024, Italy

The near detector

- Mainly for cross-checking the neutrino flux, but we can use it to do BSM analysis too
- Will be the first purely leptonic test of "zero distance neutral oscillations"

< < >> < <</>