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NOvA (NuMI Off-Axis νe Appearance)

Long-baseline neutrino oscillation

experiment, which goals are:

νµ(ν̄µ) disappearance:

• measurement of ∆m2
32

• mixing angle θ23

νe(ν̄e) appearance:

• neutrino mass ordering

• CP violating phase

• mixing angle θ23

• mixing angle θ13

Neutrino beam from Fermilab (USA).

Near (1 km) and Far (810 km) detectors sit at 14.6 mrad off-axis.
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NOvA Detectors

ND: 214 Planes, 290 ton FD: 896 Planes, 14 kton

• Functionally identical

tracker-calorimeters

• PVC cells filled with a liquid

scintillator

• Cells are organized into vertical

and horizontal planes to enable

three-dimensional reconstruction

• Light is collected using a loop of

wavelength-shifting optical fiber

Prong is a collection of hits that is associated with a single particle candidate.
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Event Display

νe event with Ereco = 2.17 GeV and CVN score is 0.99.

NOvA - FNAL E929

Run:   19361 / 10
Event: 142949 / --
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Event and particle classification

Event candidates that survive

basic quality cuts pass into

a deep-learning classifier CVN –

the Convolutional Visual Network.

EventCVN:

· νµ CC

· νe CC

· NC
· cosmic

ProngCVN:

· electron
· muon

· proton
· pion
· photon

ProngCVN is used as part of

the νe energy estimation.
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Electron neutrino evergy estimator

The response of the detectors is different for electromagnetic (EM) and

hadronic (Had) depositions.

A quadratic fit function is used to compute neutrino energy:

Ereco = k · (p1EEM + p2E
2
EM + p3EHad + p4E

2
Had)
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Two approaches to reconstruct EM energy

ProngCVN score for EM and Had components:

IEM = Ie + Iγ + Iπ0

IHad = Ip + Iπ± + In + Iµ− + Iother

3D prongs only

IEM ≥ IHad
3D and unmatched

2D prongs

IEM(3D) > 0.5 and

IEM(2D) > 0.7

Energy deposited by all EM-like prongs → EEM

Rest of the calorimetric energy → EHad

True EM Energy
3D only reco
3D+2D reco

True EM Energy
3D only reco
3D+2D reco

True Had Energy
3D only reco
3D+2D reco
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Algorithm for retraning the Energy estimator

For neutrino and antineutrino beam separately:

1. The Monte-Carlo files are evenly split into two parts for training and

validating.

2. Events pass selection into core and peripheral samples.

3. χ2-fit is performed on the reweighted Monte-Carlo sample, which has a

flat distribution in true energy.

χ2 =
∑

(x,y)

(
Ētrue(x , y)− Ereco(x , y ,p)

σ(x , y)

)2
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Algorithm for retraning the Energy estimator

For neutrino and antineutrino beam separately:

4. The fractional energy reconstruction error δE = (Ereco − Etrue)/Etrue is

scaled to make a distribution with a mean of zero.

5. The performance of the energy estimators are tested.

Expected that the δE has symmetrical form. RMS value (the standard

deviation of δE ) is used as the energy resolution of the energy estimator.
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New strategy for fitting

Problem The fitting results (scaling

factor k and parameters p) can be very

sensitive to the fitting range.

Solution Find the fitting range that

gives the best results. The decision is

made relying on a set of variables:

• mean of δE

• RMS of δE

• skewness of δE

• maximal variation of mean values of

δE along the weighted true energy
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Results

For the 2024 analysis, the best performance was obtained from:

Core an estimator with minimal RMS

Peripheral an estimator with minimal skewness

The retraining of νe energy estimator increased energy resolution for

antineutrino beam and provide additional functions for peripheral events for

the first time.
Energy resolution, %

Beam Approach Core Peripheral

ν 3D only 10.8 24.1

ν̄ 3D only 8.5 22.0

ν 3D + 2D 11.4

ν̄ 3D + 2D 9.0

New NOvA 3Flavor analysis results will be presented at Neutrino 2024.
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Backup



νe selection

DATA

Core Preselection

Cosmic Rej Core BDT

CVN PID cut

CVN PID and 
Cosmic Rej Periph BDT

Low 
PID

High 
PID

Basic Quality cuts

selection

Peripheral 
bin

Peripheral Preselection

⌫e

| {z }
| {z }Core sample

Peripheral sample

no

no

no

Containment step eliminating a third

of the potential signal events.

The events which fail containment cri-

teria can pass selection to peripheral

sample, where

· Events are not fully contained within

fiducial volume.

· Energy range is increased.

· Special criteria for CVN PID score

and Cosmic Rejection score.
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