New approach to estimate electron neutrino energy for the NOvA 3 Flavor Analysis

Anastasiia Kalitkina Joint Institute for Nuclear Research

Erice, 2024

NOvA (NuMI Off-Axis ν_e Appearance)

Long-baseline neutrino oscillation experiment, which goals are: $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance:

- measurement of Δm^2_{32}
- mixing angle θ_{23}
- $\nu_e(\bar{\nu}_e)$ appearance:
 - neutrino mass ordering
 - CP violating phase
 - mixing angle θ_{23}
 - mixing angle θ_{13}

Neutrino beam from Fermilab (USA). Near (1 km) and Far (810 km) detectors sit at 14.6 mrad off-axis.

Anastasiia Kalitkina, JINR

NOvA Detectors

ND: 214 Planes, 290 ton

- Functionally identical tracker-calorimeters
- PVC cells filled with a liquid scintillator
- Cells are organized into *vertical* and *horizontal* planes to enable three-dimensional reconstruction
- Light is collected using a loop of wavelength-shifting optical fiber

FD: 896 Planes, 14 kton

Prong is a collection of hits that is associated with a *single particle* candidate.

Event Display

Event and particle classification

Event candidates that survive basic quality cuts pass into a deep-learning classifier CVN – the Convolutional Visual Network.

EventCVN:	ProngCVN:	
$\cdot \; u_{\mu} \; CC$	\cdot electron	
$\cdot \nu_e$ CC	• muon	
· NC	 proton 	
· cosmic	· pion	
	\cdot photon	
ProngCVN is used as part of		

ProngCVN is used as part of the ν_e energy estimation.

Erice, 2024

Electron neutrino evergy estimator

The response of the detectors is different for electromagnetic (EM) and hadronic (Had) depositions.

A quadratic fit function is used to compute neutrino energy:

$$\Xi_{reco}=k\cdot(p_1E_{EM}+p_2E_{EM}^2+p_3E_{Had}+p_4E_{Had}^2)$$

Two approaches to reconstruct EM energy

ProngCVN score for EM and Had components:

$$\begin{split} \mathcal{I}_{\textit{EM}} &= \mathcal{I}_{\textit{e}} + \mathcal{I}_{\gamma} + \mathcal{I}_{\pi^0} \\ \mathcal{I}_{\textit{Had}} &= \mathcal{I}_{\textit{p}} + \mathcal{I}_{\pi^{\pm}} + \mathcal{I}_{\textit{n}} + \mathcal{I}_{\mu^-} + \mathcal{I}_{\text{other}} \end{split}$$

3D prongs only $\mathcal{I}_{EM} \geq \mathcal{I}_{Had}$

3D and unmatched **2D** prongs $\mathcal{I}_{EM}(3D) > 0.5$ and $\mathcal{I}_{EM}(2D) > 0.7$

Energy deposited by all EM-like prongs $\rightarrow E_{EM}$ Rest of the calorimetric energy $\rightarrow E_{Had}$

- 1. The Monte-Carlo files are evenly split into two parts for training and validating.
- 2. Events pass selection into core and peripheral samples.
- 3. χ^2 -fit is performed on the reweighted Monte-Carlo sample, which has a flat distribution in true energy.

$$\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}$$

Anastasiia Kalitkina, JINR

For neutrino and antineutrino beam separately:

- 1. The Monte-Carlo files are evenly split into two parts for training and validating.
- 2. Events pass selection into core and peripheral samples.
- 3. χ^2 -fit is performed on the reweighted Monte-Carlo sample, which has a flat distribution in true energy.

$$\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}$$

Anastasiia Kalitkina, JINR

- 1. The Monte-Carlo files are evenly split into two parts for training and validating.
- 2. Events pass selection into core and peripheral samples.
- 3. χ^2 -fit is performed on the reweighted Monte-Carlo sample, which has a flat distribution in true energy.

$$\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}$$

Anastasiia Kalitkina, JINR

- 4. The fractional energy reconstruction error $\delta_E = (E_{reco} E_{true})/E_{true}$ is scaled to make a distribution with a mean of zero.
- 5. The performance of the energy estimators are tested. Expected that the δ_E has symmetrical form. RMS value (the standard deviation of δ_E) is used as the *energy resolution* of the energy estimator.

- 4. The fractional energy reconstruction error $\delta_E = (E_{reco} E_{true})/E_{true}$ is scaled to make a distribution with a mean of zero.
- 5. The performance of the energy estimators are tested. Expected that the δ_E has symmetrical form. RMS value (the standard deviation of δ_E) is used as the *energy resolution* of the energy estimator.

New strategy for fitting

Problem The fitting results (scaling factor k and parameters \mathbf{p}) can be very sensitive to the fitting range.

Solution Find the fitting range that gives the best results. The decision is made relying on a set of variables:

- mean of δ_E
- RMS of δ_E
- skewness of δ_E
- maximal variation of mean values of δ_E along the weighted true energy

Results

For the 2024 analysis, the best performance was obtained from:

Core an estimator with minimal RMS

Peripheral an estimator with minimal skewness

The retraining of ν_e energy estimator *increased* energy resolution for antineutrino beam and provide additional functions for peripheral events for the first time.

Beam	Approach	Core	Peripheral
ν	3D only	10.8	24.1
$\bar{\nu}$	3D only	8.5	22.0
ν	3D + 2D	11.4	
$\bar{\nu}$	3D + 2D	9.0	

Energy resolution, %

New NOvA 3Flavor analysis results will be presented at Neutrino 2024.

Backup

ν_e selection

Containment step eliminating a third of the potential signal events.

The events which fail containment criteria can pass selection to peripheral sample, where

· Events are not fully contained within fiducial volume.

· Energy range is increased.

 \cdot Special criteria for CVN PID score and Cosmic Rejection score.

