New approach to estimate electron neutrino energy for the NOvA 3 Flavor Analysis

Anastasiia Kalitkina Joint Institute for Nuclear Research

Erice, 2024

NOvA (NuMI Off-Axis ν_e Appearance)

Long-baseline neutrino oscillation experiment, which goals are: $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance:

- measurement of Δm^2_{32}
- mixing angle θ_{23}
- $\nu_e(\bar{\nu}_e)$ appearance:
	- neutrino mass ordering
	- CP violating phase
	- mixing angle θ_{23}
	- mixing angle θ_{13}

Neutrino beam from Fermilab (USA). Near (1 km) and Far (810 km) detectors sit at 14.6 mrad off-axis.

NOvA Detectors

- Functionally identical tracker-calorimeters
- PVC cells filled with a liquid scintillator
- Cells are organized into vertical and horizontal planes to enable three-dimensional reconstruction
- Light is collected using a loop of wavelength-shifting optical fiber

ND: 214 Planes, 290 ton FD: 896 Planes, 14 kton

Prong is a collection of hits that is associated with a *single particle* candidate.

Event Display

Event and particle classification

Event candidates that survive basic quality cuts pass into a deep-learning classifier CVN – the Convolutional Visual Network.

the ν_e energy estimation.

Electron neutrino evergy estimator

The response of the detectors is different for electromagnetic (EM) and hadronic (Had) depositions.

A quadratic fit function is used to compute neutrino energy:

$$
E_{reco} = k \cdot (p_1 E_{EM} + p_2 E_{EM}^2 + p_3 E_{Had} + p_4 E_{Had}^2)
$$

Two approaches to reconstruct EM energy

ProngCVN score for EM and Had components:

$$
\mathcal{I}_{EM} = \mathcal{I}_e + \mathcal{I}_{\gamma} + \mathcal{I}_{\pi^0}
$$

$$
\mathcal{I}_{Had} = \mathcal{I}_p + \mathcal{I}_{\pi^{\pm}} + \mathcal{I}_n + \mathcal{I}_{\mu^-} + \mathcal{I}_{other}
$$

3D prongs only $\mathcal{I}_{FM} \geq \mathcal{I}_{Had}$

3D and unmatched 2D prongs $\mathcal{I}_{EM}(3\textsf{D}) > 0.5$ and $\mathcal{I}_{FM}(2D) > 0.7$

Energy deposited by all EM-like prongs \rightarrow E_{EM} Rest of the calorimetric energy \rightarrow E_{Had}

- 1. The Monte-Carlo files are evenly split into two parts for training and validating.
- 2. Events pass selection into core and peripheral samples.
- 3. χ^2 -fit is performed on the reweighted Monte-Carlo sample, which has a flat distribution in true energy.

$$
\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}
$$

Anastasiia Kalitkina, JINR 7 / 9

- 1. The Monte-Carlo files are evenly split into two parts for training and validating.
- 2. Events pass selection into core and peripheral samples.
- 3. χ^2 -fit is performed on the reweighted Monte-Carlo sample, which has a flat distribution in true energy.

$$
\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}
$$

Anastasiia Kalitkina, JINR 7 / 9

- 1. The Monte-Carlo files are evenly split into two parts for training and validating.
- 2. Events pass selection into core and peripheral samples.
- 3. χ^2 -fit is performed on the reweighted Monte-Carlo sample, which has a flat distribution in true energy.

$$
\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}
$$

Anastasiia Kalitkina, JINR 7 / 9

- 4. The fractional energy reconstruction error $\delta_E = (E_{reco} E_{true})/E_{true}$ is scaled to make a distribution with a mean of zero.
- 5. The performance of the energy estimators are tested. Expected that the δ_F has symmetrical form. RMS value (the standard deviation of δ_F) is used as the *energy resolution* of the energy estimator.

- 4. The fractional energy reconstruction error $\delta_E = (E_{reco} E_{true})/E_{true}$ is scaled to make a distribution with a mean of zero.
- 5. The performance of the energy estimators are tested. Expected that the δ_F has symmetrical form. RMS value (the standard deviation of δ_F) is used as the *energy resolution* of the energy estimator.

New strategy for fitting

Problem The fitting results (scaling factor k and parameters $\bf{p})$ can be very sensitive to the fitting range.

Solution Find the fitting range that gives the best results. The decision is made relying on a set of variables:

- mean of δ_F
- RMS of δ_F
- skewness of δ_F
- maximal variation of mean values of

Results

For the 2024 analysis, the best performance was obtained from:

Core an estimator with minimal RMS

Peripheral an estimator with minimal skewness

The retraining of ν_e energy estimator *increased* energy resolution for antineutrino beam and provide additional functions for peripheral events for the first time.

Energy resolution, %

New NOvA 3Flavor analysis results will be presented at Neutrino 2024.

[Backup](#page-14-0)

ν_e selection

Containment step eliminating a third of the potential signal events.

The events which fail containment criteria can pass selection to peripheral sample, where

· Events are not fully contained within fiducial volume.

· Energy range is increased.

· Special criteria for CVN PID score and Cosmic Rejection score.

