The sensitivity of long-baseline accelerator neutrino experiments to the unknown oscillation parameters

Anna Stepanova

Joint Institute for Nuclear Research (JINR), Dubna, Russia

INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS, 60th Course: NEWS FROM THE FOUR INTERACTIONS, Erice

14 - 23 June 2024

∃ ► < ∃ ►</p>

Neutrino mixing

$$\nu_{\alpha} = \sum_{\substack{i=1\\\alpha=e, \ \mu, \ \tau}}^{3} \mathsf{U}_{\mathsf{PMNS},\alpha,i}^{*} \cdot \nu_{i},$$

- ν_{α} flavor eigenstate
- ν_i mass eigenstate

Mixing matrix:

 $U_{PMNS} \sim \theta_{12}, \, \theta_{13}, \, \theta_{23}, \, \delta_{CP}$

▶ < 문 ► < 문 ► ·

Neutrino mixing:

$$\nu_{\alpha} = \sum_{\substack{i=1\\\alpha=e, \ \mu, \ \tau}}^{3} \mathsf{U}_{\mathsf{PMNS},\alpha,i}^{*} \cdot \nu_{i},$$

- ν_{α} flavor eigenstate
- ν_i mass eigenstate

Mixing matrix:

 $U_{PMNS} \sim \theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}$

The oscillation probability depends on:

- parameters of the U_{PMNS} matrix
- mass squared splittings: Δm_{21}^2 , $\Delta m_{32}^2 / \Delta m_{31}^2$ (NO/IO)
- the neutrino mass ordering: sign Δm_{32}^2
- ${\ensuremath{\bullet}}$ the matter density ρ
- a ratio of a baseline and neutrino energy $\frac{L}{E}$

A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Neutrino mixing:

$$\nu_{\alpha} = \sum_{\substack{i=1\\\alpha=e, \ \mu, \ \tau}}^{3} \mathsf{U}_{\mathsf{PMNS},\alpha,i}^{*} \cdot \nu_{i},$$

- ν_{α} flavor eigenstate
- ν_i mass eigenstate

Mixing matrix:

 $U_{PMNS} \sim \theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}$

The oscillation probability depends on:

- parameters of the U_{PMNS} matrix
- mass squared splittings: Δm_{21}^2 , $\Delta m_{32}^2 / \Delta m_{31}^2$ (NO/IO)
- the neutrino mass ordering: sign Δm_{32}^2
- ${\, \bullet \,}$ the matter density ρ
- a ratio of a baseline and neutrino energy $\frac{L}{E}$

프 () () () (

Neutrino mixing:

$$\nu_{\alpha} = \sum_{\substack{i=1\\\alpha=e, \ \mu, \ \tau}}^{3} \mathsf{U}^{*}_{\mathsf{PMNS},\alpha,i} \cdot \nu_{i},$$

- ν_{α} flavor eigenstate
- ν_i mass eigenstate

Mixing matrix:

 $U_{PMNS} \sim \theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}$

The oscillation probability depends on:

- parameters of the U_{PMNS} matrix
- mass squared splittings: Δm_{21}^2 , $\Delta m_{32}^2 / \Delta m_{31}^2$ (NO/IO)
- the neutrino mass ordering: sign Δm_{32}^2
- ${\, \bullet \,}$ the matter density ρ
- a ratio of a baseline and neutrino energy $\frac{L}{E}$

Neutrino sources (for oscillation study):

< 3 > < 3 >

- atmospheric
- accelerator
- reactor
- solar

Long-baseline accelerator neutrino experiments (LBL)

Modelling within GNA (developed in JINR)

Tasks:

- to create experiment's models: T2K, NOvA, DUNE;
- to calculate their sensitivities to the unknown oscillation parameters;
- to estimate joint sensitivities.

Global Neutrino Analysis – a software for carrying out a data analysis of neutrino events. It has:

- transformation-functions for calculations based on C++, ROOT CERN и Python;
- blocks composed in a graph;
- functions for a statistical data analysis.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A unified shell for LBL experiments in GNA

The configuration file:

- flux, xsec, efficiencies;
- the difference between *E*true and *E*recon.;
- modes with channels;
- energy scale;
- oscillation parameters;
- parameters of exp.

MODES:

(日) (四) (王) (王) (王)

A unified shell for LBL experiments in GNA

The configuration file:

- flux, xsec, efficiencies;
- the difference between *E*true and *E*recon.;
- modes with channels;
- energy scale;
- oscillation parameters;
- parameters of exp.

MODES :

- $\frac{\text{The configuration file is an input of the unified shell,}}{\text{then it is possible to calculate:}}$
 - N event rates in channels and modes;
 - χ^2 values using calculated N and data;
 - an individual sensitivity of each experiment;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• a joint sensitivity of all experiments.

A unified shell for LBL experiments in GNA

The configuration file:

- flux, xsec, efficiencies;
- the difference between *E*true and *E*recon.;
- modes with channels;
- energy scale;
- oscillation parameters;
- parameters of exp.

MODES :

initial_flavor: nue
final_flavor: nue
xsec_type: CC

- $\frac{\mbox{The configuration file is an input of the unified shell,}}{\mbox{then it is possible to calculate:}}$
 - N event rates in channels and modes;
 - χ^2 values using calculated N and data;
 - an individual sensitivity of each experiment;
 - a joint sensitivity of all experiments.

$$\mathbf{V}_{j}^{m} = \sum_{i=0}^{D} N_{j,m}^{i}, \ N_{j}^{i} = \mathsf{K} \cdot f(E_{\mathsf{true}})_{j} \cdot P(E_{\mathsf{true}})(\nu_{\alpha} \rightarrow \nu_{\beta})_{j} \cdot \sigma(E_{\mathsf{true}})_{j} \cdot \sum_{k=0}^{n} R(E_{\mathsf{true}}, E_{\mathsf{rec.}})_{jk} \cdot \varepsilon(E_{\mathsf{rec.}})_{k} \cdot \Delta E_{\mathsf{rec.}, j}$$

< < >>

A B F A B F

$$\boldsymbol{\chi^2} = = -2\sum_{m=0}^{\mathrm{M}}\sum_{j=0}^{\mathrm{B}} (N_{j,m}^{\mathsf{data}} \ln N_{j,m}^{\mathsf{mod.}} - N_{j,m}^{\mathsf{mod.}} - N_{j,m}^{\mathsf{data}} \ln N_{j,m}^{\mathsf{data}} + N_{j,m}^{\mathsf{data}}) + \frac{(x-\mu)^2}{\sigma^2}$$

DUNE FD energy spectra (event rates vs Erecon.) in the GNA

- FHC (forward horn current) / RHC (reverse horn current), equal running time
- 7 years according to the staged plan:

plan	kt	MWt
1 year	20	1.2
2 years	30	1.2
3 years	30	1.2
4 years	40	1.2
7 years	40	2.4
10 years	40	2.4

- 4 modes:
- $u_e/ar{
 u}_e$ appearance
- $u_{\mu}/ar{
 u}_{\mu}$ disappearance
- MC data from: TDR DUNE

(日) (同) (日) (日)

NOvA FD energy spectra (event rates vs Erecon.) in the GNA

T2K FD energy spectra (event rates vs Erecon.) in the GNA

 200×10^{20} POT (FHC+RHC): $\nu_{\mu}/\overline{\nu_{\mu}}$ disappearance / $\nu_{e}/\overline{\nu_{e}}$ appearance

T2K, NOvA, DUNE sensitivities to the neutrino mass ordering

- different $\sin^2 \theta_{23}$ values around the best fit from NuFIT 4.0;
- both orderings;
- $\delta_{\rm CP}$ in the whole $[-\pi,\pi]$ range.

- DUNE vs (NOvA, T2K): DUNE will be able to resolve the neutrino mass ordering problem at 5σ significant level in 2 years.
- NOvA vs T2K: due to the longer baseline (810 km vs 295 km) NOvA is more sensitive to the neutrino mass ordering than T2K.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

T2K, NOvA, DUNE sensitivities to the neutrino mass ordering

- different $\sin^2 \theta_{23}$ values around the best fit one from NuFIT 4.0;
- both orderings;
- $\delta_{\rm CP}$ in the whole $[-\pi,\pi]$ range.

- DUNE vs (NOvA, T2K): DUNE will be able to resolve the neutrino mass ordering problem at 5σ significant level in 2 years.
- NOvA vs T2K: due to the longer baseline (810 km vs 295 km) NOvA is more sensitive to the neutrino mass ordering than T2K.

T2K, NOvA, DUNE sensitivities to the δ_{CP} phase

- different sin² θ₂₃ values around the best fit from NuFIT 4.0
- both orderings
- $\delta_{\rm CP}$ in the whole $[-\pi,\pi]$ range

- DUNE vs (NOvA, T2K): DUNE sensitivity will be higher then 3σ level for some values of $\delta_{\rm CP}$ in 7 years
- NOvA vs T2K: due to the shorter baseline T2K is more sensitive to the $\delta_{\rm CP}$ phase than NOvA

・ロト ・回ト ・ヨト ・ヨト

T2K, NOvA, DUNE sensitivities to the δ_{CP} phase

- different $\sin^2 \theta_{23}$ values around the best fit one NuFIT 4.0
- both orderings
- $\delta_{\rm CP}$ in the whole $[-\pi,\pi]$ range

- DUNE vs (NOvA, T2K): DUNE sensitivity will be higher then 3σ level for some values of $\delta_{\rm CP}$ in 7 years
- NOvA vs T2K: due to the shorter baseline T2K is more sensitive to the $\delta_{\rm CP}$ phase than NOvA

・ロト ・四ト ・ヨト ・ヨト

Joint T2K, NOvA и DUNE sensitivities to the unknown oscillation parameters

• It is expected that NOvA+T2K will give the first prediction of the neutrino mass ordering and the $\delta_{\rm CP}$ phase (for some values) at > 5 σ level

< 3 > < 3 >

• joint T2K+NOvA+DUNE sensitivities to the neutrino mass ordering and the δ_{CP} phase:

Sensitivity	$\min(n\sigma)$	range of $\delta_{ m CP}$ values $>5\sigma$
Joint	11.4	$[-2.51, -0.63] \cup [0.63, 2.51]$ (60%)

Conclusion

During the study of the neutrino oscillation phenomenon:

- There was a comparison of long-baseline accelerator neutrino experiments such as T2K, NOvA (currently working), and the future DUNE experiment.
- The unified shell for FD spectra modeling was developed in the GNA.
- Individual and joint sensitivities of three experiments to the unknown oscillation parameters were calculated. The unknown parameters are the neutrino mass ordering and the CP phase.

Thank you for your attention!

