Search for Dark Sectors and Dark Photons decaying into lepton jets with the ATLAS experiment

Bernardo Ricci Erice 2024

Dark Sector through portals

- Investigated possibility: Dark Matter is a stable state of a new **Dark Sector** lacksquare
- \bullet **Dark Photon** γ_d can be massive and decay
- \bullet required

Minimal Dark Sector Model: $U(1)_d$ spontaneously broken by a Dark Higgs Mechanism \rightarrow short-range interaction, the

Minimum assumption: the existence of a vector portal (ϵ) between the Dark Sector and the Standard Model is

Dark Sector through portals

- Investigated possibility: Dark Matter is a stable state of a new **Dark Sector**
- Minimal Dark Sector Model: $U(1)_d$ spontaneously broken by a Dark Higgs Mechanism \rightarrow short-range interaction, the **Dark Photon** γ_d can be massive and decay
- required
- $BR(H \rightarrow und) < 11\%$ —> Higgs Boson can decay in Dark Sector particles through the Higgs portal

Erice 17/06/2024

Minimum assumption: the existence of a vector portal (ϵ) between the Dark Sector and the Standard Model is

Prompt decay of Dark Photon

Prompt decay —> The Dark Photon decays in the ID

Free Parameters of the Dark Sector:

- $BR(H \rightarrow und)$ affects the number of events
- ϵ affects where the Dark Photon decays ($\tau_{\gamma_d} \propto \epsilon^{-2}$)
- m_{γ_d} determine the *BR* of γ_d in Standard Model particles

Erice 17/06/2024

3

Prompt decay of Dark Photon

Prompt decay —> The Dark Photon decays in the ID

Free Parameters of the Dark Sector:

- $BR(H \rightarrow und)$ affects the number of events
- ϵ affects where the Dark Photon decays ($\tau_{\gamma_d} \propto \epsilon^{-2}$)
- m_{γ_d} determine the *BR* of γ_d in Standard Model particles

Erice 17/06/2024

Benchmark models

Erice 17/06/2024

Considered only leptonic decays

 $\gamma_d \rightarrow \mu^+ \mu^- e \gamma_d \rightarrow e^+ e^-$

The decay products are extremely collimated -> Lepton Jets (LJ)

Lepton Jets

Erice 17/06/2024

Considered only leptonic decays

 $\gamma_d \rightarrow \mu^+ \mu^- e \gamma_d \rightarrow e^+ e^-$

The decay products are extremely collimated -> Lepton Jets (LJ)

eLJ

- 1. \geq 1 reconstructed electron with \geq 2 associated tracks in a $\Delta R = 0.4$ cone
- 2. \geq 2 electrons reconstructed in a $\Delta R = 0.4$ cone

eLJ with 1 electron

eLJ with 2 electrons

μ LJ

 \geq 2 muons and no electron in a $\Delta R = 0.4$ cone

μLJ

Analysis strategy

Run-2 data-taking (2015-2018)

3 channels of study ->3 signal regions (SR) Background estimation ->3 control regions (CR) -> DATA DRIVEN

Erice 17/06/2024

Bernardo Ricci

6

Background estimation for *e*LJ – *e*LJ **channel**

x, *y* discriminating variables uncorrelated for the background(s)

 \rightarrow defining SR and CRs

$$\rightarrow N_A = \frac{N_C}{N_D} N_B$$

Erice 17/06/2024

Background estimation validated in BD and DC subregions, and in the full ABCD plane in three additional VRs

Background estimation for $\mu LJ - \mu LJ$ and $\mu LJ - eLJ$ channel

Bump hunting on $m_{\mu LJ}$: looking for localised peaks (around $m_{\gamma,\lambda}$) over a smoothly falling background

Erice 17/06/2024

 $m_{\mu\mu}$ I'I

CRs for $\mu LJ - \mu LJ$ and $\mu LJ - eLJ$ channel and background modelling

 $2\mu LJ CR$:

Events / (0.0200855 GeV

Un-binned likelihood fit using template: $B(m_{\mu\mu}) = \left(1 - f_{\exp} - f_{J/\psi} - f_{\phi(1020)} - f_{\psi(2S)}\right) e^{-m_{\mu\mu}/\tau_2} + f_{\exp}e^{-m_{\mu\mu}/\tau_2} + f_{\exp}e^{ +f_{\mathrm{J}/\psi}e^{-\left(\frac{m\mu\mu-\mu_{\mathrm{J}/\psi}}{\sigma_{\mathrm{J}/\psi}}\right)^{2}}+f_{\psi(2S)}e^{-\left(\frac{m\mu\mu-\mu_{\psi(2S)}}{\sigma_{\psi(2S)}}\right)^{2}}+f_{\phi(1020)}e^{-\left(\frac{m\mu\mu-\mu_{\phi(1020)}}{\sigma_{\phi(1020)}}\right)^{2}}$

Erice 17/06/2024

$1\mu LJ$ -1eLJ CR:

$$-m_{\mu\mu}/\tau$$
 +

Functional form able to describe $m_{\mu LJ}$ in the two orthogonal CRs

Unblinded ABCD for *e*LJ – *e*LJ channel

Selection CR C SR expected CR B CR D 303 ± 33 *e*LJ–*e*LJ 125 862 356

Compatible with SM expectation within 1.8σ

 \rightarrow constraints on free parameters of benchmark models!

Unblinded distributions for $\mu LJ - \mu LJ$ and $\mu LJ - eLJ$ channel

No excess over SM prediction compatible with m_{γ_d} hypothesis \rightarrow constraints on free parameters of benchmark models!

Limits for all channels on $BR(H \rightarrow 2\gamma_d + X)$

- Known resonance regions (ρ , $\phi(1020)$, J/ψ) are vetoed
- eLJ-eLJ channel: m_{γ_d} < 240 MeV μ LJ- μ LJ and μ LJ-eLJ: m_{γ_d} > 240 MeV
- Combined fit for muonic and mixed channel

Presented new result on a search for prompt Dark Photon decays with Lepton Jets

- Extension on $BR(H \rightarrow 2\gamma_d + X)$ upper limit ullet
- First analysis in ATLAS for HAHM model ullet

- First result with Run 2 (7x more stat compared to previous result) ullet
- Extended mass range: from 17 MeV up to 20 GeV in Dark Photon masses. \bullet

THANKS FOR THE ATTENTION

- A.F. et al., Hidden Higgs Decaying to Lepton Jets [https://arxiv.org/abs/1002.2952] • D.C. et al., Dark Photons with High-Energy Colliders [<u>https://arxiv.org/abs/1412.0018</u>] • P.I. et al., Serendipity in dark photon searches [<u>https://arxiv.org/abs/1801.04847</u>] •Atlas Collaboration, A search for prompt lepton-jets in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

- [https://arxiv.org/abs/1511.05542]
- R.L. Workman et al., **Review of Particle Physics** [PTEP 2022 (2022) 083C01]
- •Tech. rep. Geneva: CERN, Search for light long-lived neutral particles from Higgs boson decays via vector-bosonfusion production from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector [<u>https://cds.cern.ch/record/</u> 2870215
- •A. L. Read: Presentation of search results: the CLs technique [https://iopscience.iop.org/article/ 10.1088/0954-3899/28/10/313
- •G. Cowan, K. Cranmer, E. Gross, O. Vitells: Asymptotic formulae for likelihood-based tests of new physics [Eur. Phys. J. C **71** (2011) 1554]

Erice 17/06/2024

Backup

Comparison with Run-1 search

FRVZ model excluded with a smaller $BR(H \rightarrow 2\gamma_d + X)$ wrt Run-1 search (e.g. for $m_{\gamma_A} = 0.4 \text{MeV}$ 100 times smaller!)

In the FRVZ model, $m_{\gamma_{d}} < 0.2 \,\text{GeV}$ and $m_{\gamma_d} \in [2,10] \text{ GeV}$ probed for the first time using the pLJ signature, excluding $BR(H \to 2\gamma_d + X) \in [0.4\%, 6\%]$ and $BR(H \to 2\gamma_d + X) \in [0.005\%, 1\%]$

HAHM model probed for the first time using the pLJ signature, excluding for $m_{\gamma_d} < 0.4 \, \text{GeV}$ $BR(H \to 2\gamma_d + X) \in [0.05\%, 2\%]$ and for $m_{\gamma_d} \in [0.4, 10] \, \mathrm{GeV}$ $BR(H \to 2\gamma_d + X) \in [0.0001 \%, 0.002\%]!$

FRVZ

					HAHM		
$m_H \; [\text{GeV}]$	number of γ_D	$m_{\gamma_D} [\text{GeV}]$	m_{HLSP} [GeV]	$m_{f_d} \; [\text{GeV}]$			5 a : a
125	2	0.017	2	5	$m_H [\text{GeV}]$	number of γ_D	m_{γ_D} [Ge]
125	2	0.03	2	5	125	2	0.017
125	2	0.06	2	5	105	-	0.01
125	2	0.1	2	5	125	2	0.01
125	2	0.24	2	5	125	2	0.4
125	2	0.4	2	5	195	9	9
125	2	0.9	2	5	120		
125	2	2	2	10	125	2	10
125	2	6	4	25	125	2	15
125	2	10	6	35	105	-	20
125	2	15	10	45	125	2	25
125	2	25	10	45	125	2	40
125	2	40	7	55			

20

Erice 17/06/2024

ATLAS is a multipurpose particle detector used at the Large Hadron Collider (LHC) at CERN During Run 2 of LHC (2015-2018) ATLAS collected p-p collisions corresponding to an energy in the center of mass equal to \sqrt{s} = 13 TeV.

> Pseudorapidity $\eta = -\ln(\tan\frac{\theta}{2})$

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

 $p_{\rm T} = \sqrt{p_x^2 + p_y^2}$

ATLAS is a multipurpose particle detector used at the Large Hadron Collider (LHC) at CERN During Run 2 of LHC (2015-2018) ATLAS collected p-p collisions corresponding to an energy in the center of mass equal to \sqrt{s} = 13 TeV.

FRVZ and HAHM

Erice 17/06/2024

Reconstruction efficiency *µ***LJ**

μLJ reconstruction efficiency

Reconstruction efficiency eLJ

Erice 17/06/2024

Bernardo Ricci

24

Number of electrons in eLJ

Figure 5.4: (a) Number of calorimeter clusters in *e*LJ as a function of ΔR between truth electrons. Number of (b) associated and (c) non-associated tracks in eLJ, as a function of ΔR between truth electrons. These plots are produced from a signal sample with a dark photon mass of 0.1 GeV.

FRVZ and HAHM

26

2eLJ channel: 2 resolved electrons (one per each eLJ) \rightarrow single and di-electron triggers $1eLJ - 1\mu LJ$ channel: at most 2 collimated electrons and 2 collimated muons \rightarrow single electron, di-muon and 1electron-1muon triggers $2\mu LJ$ channel: at most two pairs of collimated muons \rightarrow di-muon and tri-muon trigger

Requirement / Region	$2\mu LJ^{high-p_T}$	$2\mu LJ^{low-p_T}$	µLJ–eLJ
Number of μ LJs	2	2	1
Number of <i>eLJs</i>	0	0	1
di-muon trigger	yes	_	yes
tri-muon trigger	—	yes	—
electron-muon trigger	—	—	yes
electron trigger	_	_	yes

Signal Regions

Selection	$2\mu { m LJ~SR}$	$1 \mu L.$
$q_{ m LJ}=0$	\checkmark	\checkmark
$\Delta \phi({ m LJ},{ m LJ})$	X	≥ 2
$e { m LJ} \mid \eta \mid \leq 1.37$	X	\checkmark
$e\mathrm{LJ}$ leading track $p_\mathrm{T} \geq 5\mathrm{GeV}$	X	\checkmark
$e{ m LJ} \; p_{ m T}^{ m imb}$	X	< 0.8
$e { m LJ} \ R_{\phi} < 0.96$	X	X
$m^{ m imb} < 0.8$	X	X
Z mass veto	X	X
$N_{\rm jet40}=0$	X	X
_		

After these requirements, dominating backgrounds:

- $2\mu LJ$ channel: di-boosted resonances (decaying into muons) production
- $eLJ \mu LJ$ channel: single boosted resonance (decaying into muons) production
- 2*e*LJ channel: Z+jets

Preselection and trigger strategy

- Preselection of events:
 - Event in GRL + presence of at least one "good primary vertex"
 - Reconstruction of at least 2 LJ
 - Pass trigger strategy
 - Trigger matching

Erice 17/06/2024

^o 1 μ LJ + 1eLJ –> OR ff single electron, di-muon and mixed triggers e- μ

Туре	Data-taking periods	Trigger		
		HLT_e24_lhmedium_L1EM20VH		
	2015	HLT_e60_lhmedium		
Single electron		HLT_e120_lhloose		
Single-electron		HLT_e26_lhtight_nod0_ivarloose		
	2016 A-end	HLT_e60_lhmedium_nod0		
		HLT_e140_lhloose_nod0		
	2015	HLT_mu18_mu8noL1		
	2015 - 2016 A	HLT_2mu10		
Di-muon	2016 A - E	HLT_mu20_mu8noL1		
	2016 B - end - 2017 - 2018	HLT_2mu14		
	2016 F - end - 2017 - 2018	HLT_mu22_mu8noL1		
	2015	HLT_e7_lhmedium_mu24		
	2015	HLT_e17_lhloose_mu14		
Electron-muon	2016 - 2017 -2018	HLT_e17_lhloose_nod0_mu14		
	2016 A	<pre>HLT_e24_lhmedium_nod0_L1EM20VHI_mu8noL1</pre>		
	2016 B-E	HLT_e7_lhmedium_nod0_mu24		
	2016 F-end	HLT_e26_lhmedium_nod0_L1EM22VHI_mu8noL1		
	2017-2018	HLT_e26_lhmedium_nod0_mu8noL1		

Invariant mass µLJ

- μ LJ always with 2 muons: mass unchanged with reconstructed muons
- Good resolution of invariant mass (as in the muonic channel)

Erice 17/06/2024

30

Invariant mass eLJ

- eLJ with 1 electron: unchanged mass reconstructed from tracks:
 - Best-matched track with same charge as the electron
 - Track with opposite charge with higher p_T
- eLJ with 2 electrons: mass unchanged from reconstructed electrons

Erice 17/06/2024

Bernardo Ricci

31

Invariant mass eLJ: 1 electron VS 2 electrons

eLJ reconstructed with 1 electron for high m_{γ_d} :

- Two electrons too far away to reconstruct an eLJ
- random track

Erice 17/06/2024

• Two electrons are quite close, but one fails requirements of the WP and ISO -> eLJ reconstructed with an electron +

Trigger efficiencies and trigger-matching

Туре	Data-taking periods	Trigger						
		HLT_e24_lhmedium_L1EM20VH				-RVZ		
Single-electron	2015	HLT_e60_lhmedium		240 MeV	400 MeV	900 MeV	2 GeV	6 Ge
	2016 A-end	HLT_e120_lhloose HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0	2015 2016 A 2016 B-E 2016 E and	0.64 ± 0.04 0.70 ± 0.09 0.505 ± 0.021 0.497 ± 0.015	0.65 ± 0.06 0.69 ± 0.19 0.500 ± 0.029 0.575 ± 0.020	0.83 ± 0.08 $1.00^{+0.00}_{-0.35}$ 0.63 ± 0.05 0.681 ± 0.034	0.86 ± 0.13 0.67 ± 0.27 0.60 ± 0.08 0.56 ± 0.06	$0.94 \pm 1.00 \pm 0.926 \pm 0.830 $
D:	2015 2015 - 2016 A 2016 A	HLT_mu18_mu8noL1 HLT_2mu10	2010 P-end 2017 2018	0.497 ± 0.013 0.600 ± 0.013 0.615 ± 0.010	0.575 ± 0.020 0.679 ± 0.016 0.681 ± 0.013	0.081 ± 0.034 0.733 ± 0.028 0.741 ± 0.022	0.50 ± 0.00 0.65 ± 0.05 0.653 ± 0.034	$0.850 \pm 0.863 \pm 0.907 \pm$
Di-muon	2016 A - E 2016 B - end - 2017 - 2018 2016 F - end - 2017 - 2018	HLT_mu20_mu8hoL1 HLT_mu22_mu8noL1	ΗΔΗΜ					
	2015	HLT_e7_lhmedium_mu24 HLT_e17_lhloose_mu14						
Electron-muon	2016 - 2017 -2018 2016 A 2016 B-E 2016 F-end 2017-2018	HLT_e17_lhloose_nod0_mu14 HLT_e24_lhmedium_nod0_L1EM20VHI_mu8noL1 HLT_e7_lhmedium_nod0_mu24 HLT_e26_lhmedium_nod0_L1EM22VHI_mu8noL1 HLT_e26_lhmedium_nod0_mu8noL1		2015 2016 A 2016 B-E	$400 \text{ MeV} \\ 0.939 \pm 0.015 \\ 0.90 \pm 0.04 \\ 0.824 \pm 0.012 \\ $	2 GeV 0.86 ± 0.07 $1.00^{+0.00}_{-0.34}$ 0.79 ± 0.04	10 GeV 0.987 ± 0.000 $1.00^{0.00}_{-0.1}$ 0.934 ± 0.000	.013 .013 .015
	2017-2010			2016 F-end 2017 2018	0.863 ± 0.008 0.926 ± 0.005 0.911 ± 0.004	$\begin{array}{c} 0.832 \pm 0.023 \\ 0.917 \pm 0.014 \\ 0.869 \pm 0.014 \end{array}$	$\begin{array}{rrr} 3 & 0.988 \pm 0. \\ 4 & 0.9939 \pm 0. \\ 4 & 0.9882 \pm 0. \end{array}$.004 .0025 .0030

- Trigger matching:
- If single electron trigger: trigger matching with at least one electron in the eLJ
- If di-muon trigger: trigger matching with both muons in the μ LJ
- If $e-\mu$ trigger: trigger matching both the electron and the muon

Erice 17/06/2024

F	RVZ	

33

Signal Regions

$\mu \text{LJ-1}e \text{LJ SR}$	2e LJ SR
	\checkmark
<u>≥</u> 2	≥ 2.5
	\checkmark
	\checkmark
< 0.8	< 0.82 (leading eLJ)
	sub-leading <i>e</i> LJ
	\checkmark
	\checkmark
	\checkmark

$\mu \text{LJ-1}e \text{LJ SR}$	$2e { m LJ~SR}$
	\checkmark
<u>≥</u> 2	≥ 2.5
	\checkmark
	\checkmark
	< 0.82 (loading of I)
< 0.8	< 0.02 (leading eLJ)
< 0.8 (< 0.82 (leading eLJ) sub-leading <i>e</i> LJ
< 0.8	< 0.82 (leading eLJ) sub-leading <i>e</i> LJ ✓
< 0.8	 < 0.82 (leading eLJ) sub-leading eLJ ✓ ✓

$2\mu { m LJ~SR}$	1
\checkmark	✓
X	\geq
×	✓
×	✓
X	<
X	X
X	Х
X	Х
X	Х
	2µLJ SR ✓ × × × × × ×

Selection	$2\mu { m LJ~SR}$	1
$q_{ m LJ}=0$	\checkmark	✓
$\Delta \phi({ m LJ},{ m LJ})$	×	\geq
$e { m LJ} \eta \leq 1.37$	×	✓
$e{\rm LJ}$ leading track $p_{\rm T} \geq 5{\rm GeV}$	X	✓
$e{ m LJ} \; p_{ m T}^{ m imb}$	X	<
$e { m LJ} \ R_{\phi}^- < 0.96$	X	X
$m^{ m imb} < 0.8$	X	X
Z mass veto	X	X
$N_{ m jet40}=0$	X	Х

Background estimation for *e*LJ – *e*LJ **channel**

$$\rightarrow N_A = \frac{N_C}{N_D} N_B$$

Signal Region

-	m_{γ_d}	240 MeV	400 MeV	900 MeV	2 GeV	6 GeV
	Triggers	44210 ± 240	41150 ± 230	35090 ± 210	45380 ± 240	49680 ± 250
	1 µLJ, 1 eLJ	3880 ± 70	2470 ± 50	834 ± 32	331 ± 20	711 ± 29
	Trigger matching	3650 ± 70	2370 ± 50	802 ± 31	324 ± 20	698 ± 29
	$eLJ p_T track > 5 GeV$	3630 ± 70	2340 ± 50	795 ± 31	315 ± 20	689 ± 28
ΓΠΥΖ	$e LJ \eta < 1.37$	2500 ± 60	1670 ± 50	613 ± 27	203 ± 16	501 ± 24
	$ \Delta \phi (\mu LJ, eLJ) > 2$	1750 ± 50	1080 ± 40	354 ± 21	100 ± 11	361 ± 21
	$q_{eLJ} = 0$	1700 ± 50	1070 ± 40	341 ± 21	88 ± 10	341 ± 20
	$q_{\mu \text{LJ}} = 0$	1700 ± 50	1070 ± 40	341 ± 21	88 ± 10	341 ± 20
	$ p_{\rm T}^{imb} < 0.8$	1320 ± 40	793 ± 31	275 ± 19	54 ± 8	323 ± 19
	m_{γ_d}	400 MeV	2 GeV	10 GeV		
	Triggers	126600 ± 400	98570 ± 350	150100 ± 400)	
	1 µLJ, 1 eLJ	12400 ± 120	1500 ± 40	3710 ± 70		
	Trigger matching	12310 ± 120	1480 ± 40	3700 ± 70		
	$eLJ p_T$ track > 5 GeV	12270 ± 120	1470 ± 40	3670 ± 70		
HAHM	$e LJ \eta < 1.37$	8840 ± 110	1080 ± 40	2610 ± 60		
	$ \Delta \phi (\mu LJ, eLJ)>2$	6810 ± 90	625 ± 27	2260 ± 50		
	$q_{eLJ} = 0$	6630 ± 90	581 ± 26	2190 ± 50		
	$q_{\mu \text{LJ}} = 0$	6630 ± 90	581 ± 26	2190 ± 50		
	$ p_{\rm T}^{imb} < 0.8$	5470 ± 80	425 ± 22	2130 ± 50		

Erice 17/06/2024

 $\sigma_{\rm ggF} = 48.51 \, {\rm pb}$, L = 139 fb⁻¹, BR($H \rightarrow 2\gamma_d + X$) = 5 %

Control Region

FRVZ	Selection cuts	240 MeV	400 MeV	900 MeV	2 GeV	6 GeV
	Triggers	44210 ± 240	41150 ± 230	35090 ± 210	45380 ± 240	49680 ± 250
	$1 \ \mu LJ, 0 \ e LJ, 0 \ \mu, e \ge 2$	9.5 ± 3.4	5.5 ± 2.5	12 ± 4	21 ± 5	650 ± 28
	Trigger matching	6.1 ± 2.7	3.4 ± 2.0	7.0 ± 2.9	17 ± 4	579 ± 26
	<i>ee</i> $p_{\rm T}$ track > 5 GeV	6.1 ± 2.7	3.4 ± 2.0	7.0 ± 2.9	15 ± 4	579 ± 26
	$ \Delta \phi (\mu LJ, ee) > 2$	2.4 ± 1.7	2.2 ± 1.6	2.4 ± 1.7	11.2 ± 3.5	433 ± 22
	$q_{\mu \text{LJ}} = 0$	2.4 ± 1.7	2.2 ± 1.6	2.4 ± 1.7	11.2 ± 3.5	433 ± 22
	$m_{imb} > 0.6$	2.4 ± 1.7	2.2 ± 1.6	2.4 ± 1.7	6.4 ± 2.6	1.3 ± 0.9

	Selection cuts	400 MeV	2 GeV	10 GeV
	Triggers	126600 ± 400	98570 ± 350	150100 ± 400
1μ	$1 \ \mu LJ, 0 \ e LJ, 0 \ \mu, e \ge 2$	23 ± 5	14 ± 4	3320 ± 60
	Trigger matching	22 ± 5	10.2 ± 3.4	3250 ± 60
1	<i>ee</i> $p_{\rm T}$ track > 5 GeV	22 ± 5	10.2 ± 3.4	3250 ± 60
	$ \Delta \phi (\mu LJ, ee) > 2$	18 ± 5	4.4 ± 2.2	2730 ± 60
	$q_{\mu \text{LJ}} = 0$	18 ± 5	4.4 ± 2.2	2730 ± 60
	$m_{imb} > 0.6$	12 ± 4	4.4 ± 2.2	3.9 ± 2.1

Erice 17/06/2024

 $\sigma_{\rm ggF} = 48.51 \,\mathrm{pb}, \,\mathrm{L} = 139 \,\mathrm{fb}^{-1}, \,\mathrm{BR}(H \to 2\gamma_d + X) = 5 \,\%$

Signal shape modelling

Double-Sided Crystal Ball

$$N \cdot \begin{cases} e^{-t^2/2} & \text{if } -\alpha_{\text{low}} \leq t \leq \alpha_{\text{high}} \\ \frac{e^{-0.5\alpha_{\text{low}}^2}}{\left[\frac{\alpha_{\text{low}}}{n_{\text{low}}}\left(\frac{n_{\text{low}}}{\alpha_{\text{low}}} - \alpha_{\text{low}} - t\right)\right]^{n_{\text{low}}}} & \text{if } t < -\alpha_{\text{low}} \\ \frac{e^{-0.5\alpha_{\text{high}}^2}}{\left[\frac{\alpha_{\text{high}}}{n_{\text{high}}}\left(\frac{n_{\text{high}}}{\alpha_{\text{high}}} - \alpha_{\text{high}} + t\right)\right]^{n_{\text{high}}}} & \text{if } t > \alpha_{\text{high}}, \\ t = (m_{\mu\mu} - \mu_{\text{CB}})/\sigma_{\text{CB}} \end{cases}$$

$$n_h = \text{const} = 6$$

 $n_l = \text{const} = 3$

Erice 17/06/2024

Signal shape modelling: FRVZ

Erice 17/06/2024

Parameter extrapolation: FRVZ

Erice 17/06/2024

43

Signal shape modelling: HAHM

Erice 17/06/2024

Fit DSCB

DSCB extrapolated 2μ LJ

DSCB extrapolated μ LJ-eLJ

Parameter extrapolation: HAHM

Erice 17/06/2024

45

Check if the signal rendering 'injected' agrees with the fitted one

Slight dependence of the fit on modelling (Using muonic channel parameterization)

Mismodelling covered by 5% uncertainty

Acceptance X Efficiency

Erice 17/06/2024

$\mathcal{A} \times \epsilon|_{\mu \text{LJ}-e \text{LJchannel}} = \mathcal{A} \times \epsilon|_{\gamma_d \to 2\mu, \gamma_d \to 2e} BR(\gamma_d \to 2\mu)BR(\gamma_d \to 2e) \times 2e$

- $BR(\gamma_d \rightarrow 2\mu), BR(\gamma_d \rightarrow 2e)$
- ΔR of decay products -> Efficiency of reconstruction of the LJs
- $p_{\rm T}$ of leptons —> acceptance of triggers

Bernardo Ricci

Acceptance X Efficiency: 1 electron in eLJ

Erice 17/06/2024

$\mathcal{A} \times \epsilon|_{\mu \text{LJ}-e \text{LJchannel}} = \mathcal{A} \times \epsilon|_{\gamma_d \to 2\mu, \gamma_d \to 2e} BR(\gamma_d \to 2\mu) BR(\gamma_d \to 2e) \times 2e$

 $A \times \epsilon$ can change due to:

- $BR(\gamma_d \rightarrow 2\mu), BR(\gamma_d \rightarrow 2e)$
- ΔR of decay products -> Efficiency of reconstruction of the LJs
- $p_{\rm T}$ of leptons —> acceptance of triggers

Acceptance X Efficiency: 2 electrons in eLJ

Erice 17/06/2024

$\mathcal{A} \times \epsilon|_{\mu \text{LJ}-e \text{LJchannel}} = \mathcal{A} \times \epsilon|_{\gamma_d \to 2\mu, \gamma_d \to 2e} BR(\gamma_d \to 2\mu) BR(\gamma_d \to 2e) \times 2$

 $A \times \epsilon$ can change due to:

- $BR(\gamma_d \rightarrow 2\mu), BR(\gamma_d \rightarrow 2e)$
- ΔR of decay products -> Efficiency of reconstruction of the LJs
- $p_{\rm T}$ of leptons —> acceptance of triggers

Spurious Signal

Poor background -> risk of induced background (Spurious Signal)

Systematics of Spurious Signal calculated via fit S+B on template of only background

Erice 17/06/2024

Systematics <u>must be</u> in $0.5\sigma_{\rm stat}$

Very sensible to statistical fluctuations

Smoothed template

m_{γ_d}	triggers	μLJ	μLJ	μLJ	eLJ	eLJ	eLJ	PRW	egamma	egamma	muon	muon	muon	Tota
		reconstruction	isolation	TTVA	reconstruction	ID	isolation		resolution	scale	ID	MS	scale	
(GeV)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%
0.24	0.77	0.06	1.10	0.04	0.38	0.53	0.07	2.17	0.23	0.29	0.12	0.22	0.12	2.6
0.40	0.49	0.04	1.16	0.04	0.36	0.48	0.06	1.33	0.15	0.01	0.18	0.06	0.35	1.9
0.90	0.63	0.08	1.14	0.07	0.25	0.26	0.03	6.56	0.56	0.58	0.52	0.03	0.04	6.7
2	0.65	0.01	1.00	0.19	0.69	1.33	0.91	7.59	4.75	4.71	0.04	0.03	0.03	10.3
6	1.84	0.10	0.55	0.03	1.37	3.98	2.66	2.66	0.06	0.32	0.32	0.69	0.66	6.0

Table 8.5: Summary table of the systematic uncertainties on FRVZ signal MC events in the μ LJ- eLJ channel.

m_{γ_d}	triggers	μLJ	μLJ	μLJ	eLJ	eLJ	eLJ	PRW	egamma	egamma	muon	muon	muon
		reconstruction	isolation	TTVA	reconstruction	ID	isolation		resolution	scale	ID	MS	scale
(GeV)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.40	0.28	0.10	0.53	0.04	0.36	0.25	0.02	0.01	0.04	0.07	0.06	0.06	0.17
2	0.15	0.12	0.56	0.01	0.37	0.26	0.04	3.9	0.02	0.48	0.01	0.00	0.00
10	0.35	0.16	0.28	0.01	1.14	0.42	0.06	0.43	0.04	0.11	0.04	0.00	0.00

Table 8.6: Summary table of the systematic uncertainties on HAHM signal MC events in the μ LJ- eLJ channel.

Isolation for boosted muons

Recommended isoWP: PflowLoose VarRad: ptvarcone30 + 0.4 * neflowiso120 < $0.16p_T^{\mu}$,

 μ in μ LJ fails standard iso WP (ptvarcone30) \rightarrow corrected isolation developed

Erice 17/06/2024

- Corrected isolation: as ptvarcone30, removing track belonging to close-by muon (isoCloseByTool) <

Used by <u>HZZ</u> analysis as well!

Efficiency increased up to 90 % !!

Triggers muonic channel

	Туре	Data-taking periods	Trigger		
		2015 2015 - 2016 A	HLT_mu18_mu8noL1 HLT_2mu10		
	di-muon	2016 A 2016 A-D3	HLT_2mu10_nomucomb HLT_mu20_mu8noL1		
		2016 B-end - 2017 - 2018 2016 B-D3 2016 D4-end - 2017 - 2018	HLT_2mu14 HLT_2mu14_nomucomb HLT_mu22_mu8noL1		
_	tri-muon	2015 - 2016 B-D3 - 2017 - 2018 2015-2018 - all periods	HLT_3mu6 HLT_3mu6_msonly		

Table 6.1: List of muon triggers used in the μ LJ– μ LJ channel for the corresponding data-taking periods.

Signal region muonic channel

Cuts	$m_{\gamma_d} = 0.24 \mathrm{GeV}$	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 0.9 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 6 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$
None	337900 ± 700	337900 ± 700	337900 ± 700	331200±1100	349300±1000	337800 ± 700	337600 ± 700
$2\mu LJ$	8760 ± 100	11020 ± 120	8650±100	3300 ± 40	422±12	145 ± 14	40 ± 7
Trigger	5080 ± 80	6700 ± 90	5230 ± 80	2482 ± 33	400 ± 12	139±13	40 ± 7
Trigger matching	3460 ± 60	4560 ± 70	3580 ± 70	1839 ± 29	344±11	137±13	37±7
$q_{\mu \mathrm{LJ}} = 0$	3460 ± 60	4560 ± 70	3580 ± 70	1839 ± 29	344±11	137±13	30±6

the FRVZ model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d + X) = 0.05$.

Cuts	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$	$m_{\gamma_d} = 25 \text{GeV}$
None	337800 ± 700	337800 ± 700	337600 ± 700	337600 ± 700	337800 ± 700
$2\mu LJ$	22390 ± 170	19780 ± 160	3490 ± 70	297 ± 20	52 ± 8
Trigger	19920 ± 160	17850 ± 150	3440 ± 70	294 ± 20	52 ± 8
Trigger Matching	17390 ± 150	15610 ± 140	3350 ± 70	289±19	50±8
$q_{\mu \mathrm{LJ}} = 0$	17380 ± 150	15610 ± 140	3350 ± 70	289±19	50±8

the HAHM model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d) = 0.05$.

Erice 17/06/2024

Table 7.1: Signal events remaining after each cut applied in the μ LJ- μ LJ channel. Events are generated according to

Table 7.2: Signal events remaining after each cut applied in the μ LJ- μ LJ channel. Events are generated according to

Control region muonic channel

Erice 17/06/2024

Cuts	$m_{\gamma_d} = 0.24 \text{GeV}$	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 0.9 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 6 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$
None	337900 ± 700	337900 ± 700	337900 ± 700	331200 ± 1100	349300 ± 1000	337800 ± 700	337600 ± 700
$1\mu LJ + 0eLJ$	77380 ± 310	89480 ± 340	83170±330	55840 ± 270	21570 ± 150	12530 ± 130	3750 ± 70
Triggers	4970 ± 80	6550±90	6520 ± 90	3330 ± 40	2273±35	3220 ± 60	1510 ± 40
Trigger matching	585 ± 27	1980 ± 50	2810 ± 60	1515 ± 26	1372 ± 24	2430 ± 60	1170 ± 40
Electron veto	581±27	1960 ± 50	2800 ± 60	1508 ± 26	1361 ± 23	2410 ± 60	1170 ± 40
2 signal muons	2.5 ± 1.8	2.7 ± 1.6	$3.0{\pm}1.8$	2.6 ± 1.1	558 ± 14	1190 ± 40	655±28
$\Delta R_{\mu\mu} > 1.8$	2.5 ± 1.8	1.9 ± 1.4	1.3 ± 1.3	1.1 ± 0.6	0.6 ± 0.4	39±7	240±16
$ m^{\rm imb} > 0.2$	2.5 ± 1.8	1.9 ± 1.4	1.3 ± 1.3	1.1 ± 0.6	0.6 ± 0.4	28 ± 6	196±15
$\Delta \phi_{\mu \mathrm{LJ}-\mu\mu} > 2.8$	1.3 ± 1.3	$0.0{\pm}0.0$	1.3 ± 1.3	0.4 ± 0.4	0.27 ± 0.27	$0.8 {\pm} 0.8$	$0.0{\pm}0.0$
$q_{\mu \mathrm{LJ}} = 0$	$0.0{\pm}0.0$	$0.0{\pm}0.0$	1.3 ± 1.3	$0.0{\pm}0.0$	0.27 ± 0.27	$0.0 {\pm} 0.0$	$0.0 {\pm} 0.0$

Table 7.3: Signal events remaining after each cut applied in the CR of the μ LJ- μ LJ channel. Events are generated according to the FRVZ model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d + X) = 0.05$.

Cuts	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$	$m_{\gamma_d} = 25 \mathrm{GeV}$
None	337800 ± 700	337800 ± 700	337600 ± 700	337600 ± 700	337800 ± 700
$1\mu LJ + 0eLJ$	107700 ± 400	115500 ± 400	53910±260	16480 ± 150	3380 ± 70
Trigger	9060±110	9950±110	12770 ± 130	4800 ± 80	1070 ± 40
Trigger matching	3130±60	4300 ± 70	10280 ± 110	4100 ± 70	875±34
Electron veto	3130±60	4290 ± 70	10220 ± 110	4080 ± 70	870±33
2 signal muons	$3.4{\pm}2.0$	6.2 ± 2.6	5730 ± 80	2500 ± 60	505 ± 25
$\Delta R_{\mu\mu} > 1.8$	2.3 ± 1.6	3.5 ± 2.0	8.9 ± 3.0	58±8	144 ± 13
$ m^{imb} > 0.2$	2.3 ± 1.6	3.5 ± 2.0	5.8 ± 2.4	2.3 ± 1.6	3.3 ± 1.7
$\Delta \phi_{\mu \mathrm{LJ}-\mu\mu} > 2.8$	1.3 ± 1.3	2.5 ± 1.8	5.8 ± 2.4	1.0 ± 1.0	1.2 ± 1.2
$q_{\mu \mathrm{LJ}} = 0$	$0.0{\pm}0.0$	$0.0 {\pm} 0.0$	0.0 ± 0.0	1.0 ± 1.0	1.2 ± 1.2

Table 7.4: Signal events remaining after each cut applied in the CR of the μ LJ- μ LJ channel. Events are generated according to the HAHM model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d) = 0.05$.

Periods	Single-electron triggers
	HLT_e24_lhmedium_L1EM20VH
2015	HLT_e60_lhmedium
	HLT_e120_lhloose
	HLT_e26_lhtight_nod0_ivarloose
2016-2018	HLT_e60_lhmedium_nod0
	HLT_e140_lhloose_nod0

Table 6.2: Choice of lowest unprescaled single electron trigger list used in the eLJ-eLJ selection and the corresponding data-taking periods.

Erice 17/06/2024

Periods	Di-electron triggers
2015	HLT_2e12_lhvloose_L12EM10VH
2016	HLT_2e17_lhvloose_nod0
2017 (only B5-B8)	HLT_2e24_lhvloose_nod0
2017 (except B5-B8)	HLT_2e17_lhvloose_nod0_L12EM15VHI
2018	HLT_e60_lhmedium_nod0

Table 6.3: Choice of lowest unprescaled di-electron trigger list used in the eLJ-eLJ selection and the corresponding data-taking periods. During the accidentally prescaled periods B5-B8 (runs 326834-328393 with an effective reduction of 0.6 fb-1), HLT_2e24_lhvloose_nod0 is used instead of HLT_2e17_lhvloose_nod0_L12EM15VHI.

Signal region electronic channel

m_{γ_d} [GeV]	0.017	0.03	0.06	0.1	0.24	0.4	0.9	2	6
2 eLJs	$1900{\pm}22$	$1500{\pm}20$	$1100{\pm}17$	$830{\pm}14$	210 ± 7	54 ± 4	$8.5 {\pm} 1.4$	$1.2{\pm}0.5$	$7.9{\pm}1.3$
Trigger Matched	$1700{\pm}20$	$1300{\pm}18$	960 ± 15	730 ± 13	200 ± 7	53 ± 4	8.5 ± 1.4	1.2 ± 0.5	7.5 ± 1.2
Leading track $p_T > 5$ GeV	$1600{\pm}20$	$1300{\pm}18$	940 ± 15	710 ± 13	200 ± 7	53 ± 4	8.1 ± 1.4	0.9 ± 0.4	7.2 ± 1.2
$eLJ \eta < 1.5$	$1100{\pm}16$	820 ± 14	610 ± 12	420 ± 10	130 ± 6	$36.0{\pm}2.9$	5.6 ± 1.1	$0.38 {\pm} 0.27$	$4.8 {\pm} 1.0$
$\Delta \Phi(eLJ, eLJ) > 2$	720 ± 13	550 ± 12	410 ± 10	300 ± 9	72 ± 4	17 ± 2	$3.2{\pm}0.9$	/	$4.3 {\pm} 1.0$
Z mass veto	580 ± 12	450 ± 11	330 ± 9	250 ± 8	57 ± 4	$11.0{\pm}1.6$	$2.4{\pm}0.8$	/	$2.5 {\pm} 0.7$
$q_{eLJ} = 0$	580 ± 12	450 ± 11	330 ± 9	250 ± 8	57 ± 4	$11.0{\pm}1.6$	$2.4{\pm}0.8$	/	$2.5 {\pm} 0.7$
$m_{eLJ} > 20 \text{ MeV}$	200 ± 6.9	$290 {\pm} 8.6$	$310 {\pm} 8.9$	240 ± 7.7	57 ± 3.7	$11.0{\pm}1.6$	2.2 ± 0.72	/	/
$ m^{imb} < 0.8$	$200{\pm}6.9$	$290{\pm}8.6$	$310{\pm}8.9$	$240{\pm}7.7$	57 ± 3.7	$11.0{\pm}1.6$	$2.0{\pm}0.68$	/	/

$m_{\gamma_d} \; [\text{GeV}]$	0.017	0.1	0.4	2	10	15	25
2 eLJs	$8400{\pm}46$	$3300{\pm}29$	470 ± 11	8.5 ± 1.4	$230\ \pm 7.5$	48 ± 3.4	12 ± 1.8
Trigger Matched	8300 ± 46	3200 ± 28	470 ± 11	8.5 ± 1.4	$230\ \pm 7.4$	46 ± 3.3	12 ± 1.7
Leading track $p_T > 5 \text{ GeV}$	8200 ± 46	3200 ± 28	460 ± 11	8.2 ± 1.4	$220~\pm7.4$	44 ± 3.2	11 ± 1.7
$eLJ \eta < 1.5$	5500 ± 37	$1700\ 21$	$280{\pm}8.5$	5.9 ± 1.1	$140\ \pm 5.7$	20 ± 2.1	4.6 ± 1.2
$\Delta \Phi(eLJ, eLJ) > 2$	4400 ± 33	1300 ± 18	$180{\pm}6.8$	2.1 ± 0.69	$130\ {\pm}5.6$	4.8 ± 1	0.68 ± 0.39
Z mass veto	4200 ± 32	1200 ± 17	$170{\pm}6.6$	2 ± 0.69	$120\ \pm 5.5$	2.5 ± 0.7	$0.22 \ {\pm} 0.22$
$q_{eLJ} = 0$	4200 ± 32	1200 ± 17	$170{\pm}6.6$	2 ± 0.69	120 ± 5.5	2.3 ± 0.69	/
$m_{eLJ} > 20 \text{ MeV}$	1800 ± 21	1100 ± 117	$170{\pm}6.6$	2 ± 0.69	$120\ \pm 5.5$	2.3 ± 0.69	/
$ m^{\rm imb} < 0.8$	$1800~{\pm}21$	$1100{\pm}117$	$170{\pm}6.6$	$2\ \pm 0.69$	$120\ \pm 5.2$	$0.33 \ {\pm} 0.24$	/

