MULTI PARTON SCATTERING

FROM REMARKABLE RESULTS TO AMBITIOUS PERSPECTIVES

SPEAKER: MARIA ELENA ASCIOTI | ON BEHALF OF THE CMS COLLABORATION

DIPARTIMENTO DI FISICA E GEOLOGIA DIPARTIMENTO DI ECCELLENZA MUR 2023/2027

Multi-parton interactions: two energy scales

- partons.
- - activity;

• The interaction between two protons can involve simultaneous interactions of multiple partons.

 Such interactions tend to increase with the center-of-mass energy due to the increase in

Multi-parton interactions (MPI):

Soft regime (low pT): secondary hadronic • Hard regime (high pT): energetic scattering between multiple pairs of partons.

Single-Parton Scattering (SPS):

Production of two or more particles through a **single interaction** between two partons. The **kinematics are correlated**, and additional gluon emissions are neglected.

Double-Parton Scattering (DPS):

Production of two particles through a **double interaction** between two partons belonging to the same protons. It is assumed that the **scatterings** are uncorrelated.

Described by the **pocket formula**:

 σ_1

$$\sigma_{
m DPS} = rac{1}{m!} rac{\sigma_{
m SPS}^{pp
ightarrow A} \sigma_{
m SPS}^{pp
ightarrow B}}{\sigma_{
m eff}}$$

Single-Parton Scattering (SPS):

Production of two or more particles through a **single interaction** between two partons. The **kinematics are correlated**, and additional gluon emissions are neglected.

Production of two particles through a **double interaction** between two partons belonging to the same protons. It is assumed that the **scatterings** are uncorrelated.

Described by the **pocket formula**:

 $\sigma_{
m DPS}$

Double-Parton Scattering (DPS):

COMBINATORIAL FACTOR

Single-Parton Scattering (SPS):

Production of two or more particles through a **single interaction** between two partons. The **kinematics are correlated**, and additional gluon emissions are neglected.

Double-Parton Scattering (DPS):

Production of two particles through a **double interaction** between two partons belonging to the same protons. It is assumed that the **scatterings** are uncorrelated.

Described by the **pocket formula**:

 $\sigma_{
m DPS} =$

SINGLE CROSS **SECTIONS**

Single-Parton Scattering (SPS):

Production of two or more particles through a **single interaction** between two partons. The **kinematics are correlated**, and additional gluon emissions are neglected.

Double-Parton Scattering (DPS):

Production of two particles through a **double interaction** between two partons belonging to the same protons. It is assumed that the **scatterings** are uncorrelated.

Described by the **pocket formula**:

 σ_{1}

$$\sigma_{\mathrm{SPS}}^{pp
ightarrow A} = rac{1}{m!} rac{\sigma_{\mathrm{SPS}}^{pp
ightarrow A} \sigma_{\mathrm{SPS}}^{pp
ightarrow B}}{\sigma_{\mathrm{eff}}}$$

EFFECTIVE CROSS SECTION

These last few years

OBSERVATION OF SAME-SIGN WW PRODUCTION FROM DOUBLE PARTON SCATTERING

Golden channel for studying **Double Parton Scattering** (DPS):

- The experimental signature of this final state is extremely clean;
- The contribution from **Single Parton Scattering** (SPS) is strongly **suppressed**.

The **exclusive cross-section** is:

 $\sigma_{
m exc} = (6.28 \pm 0.81 ({
m stat}) \pm 0.69 ({
m sys}) \pm 0.37 ({
m model})) {
m fb}$

Effective cross-section for DPS was extracted, equal to:

$$\sigma_{
m eff} = (12.2^{+2.9}_{-2.2}){
m mb}$$

4 DIFFERENT CHANNELS ANALYZED

MEASUREMENT OF PAIR PRODUCTION: Y(1S)Y(1S) AND Y(1S) + $\mu\mu$

The **kinematics** of the **DPS** process **is different compared to the SPS:** greater $|\Delta y(Y(1S), Y(1S))|$ between the mesons and a greater invariant mass.

By calculating the differential cross sections, we can obtain the **fraction of DPS events** as:

$$f_{DPS} = rac{\sigma^{DPS}_{fid}}{\sigma^{SPS}_{fid} + \sigma^{DPS}_{fid}}$$

The results obtained are:

 $egin{aligned} f_{DPS}(|\Delta(Y(1S),Y(1S))|) &= 0.39 \pm 0.14 \ f_{DPS}(m(Y(1S),Y(1S))) &= 0.27 \pm 0.22 \end{aligned}$

NB: IN THE DPS TWO THE PP SCATTERING ARE UNCORRELATED, THIS CAN BE SEEN IN DIFFERENT KINE/MATICS CORRELATIONS OF THE FINAL OBJECT

NEW STRUCTURES IN THE DOUBLE J/Ψ PRODUCTION

In the past, CMS published an analysis of the $di-J/\Psi$ **channel** that examines the data collected **during Run 1** with a centre-of-mass energy of 7 TeV.

Even in this case, the importance of including the **DPS** contribution was evident.

One of the main background sources in the di-J/ Ψ analysis of **Run 2 is DPS**, which is expected to account for **about** 25% of the background.

In the region **above 11 GeV**, we expect the **DPS** contribution to be dominant.

So, we just have to look for DPS here as well! (Spoiler: we are working on it!)

NEW NICE RESONANCES X(6600)

THREE J/Ψ IN ONE GO

By analyzing all the data collected during RUN 2, 5 signal events and one background event were found.

The expected contributions from SPS, DPS, and TPS to the cross-section measurement of triple-J/ ψ are 6%, 74%, and 20%, respectively.

The fiducial cross-section is:

SINGLE CROSS SECTIONS

HTTPS://WWW.NATURE.COM/ARTICLES/S41567-022-01838-Y#CITEAS

 $\sigma_{fid} = 272^{+141}_{-104}({
m stat}) \pm 17({
m syst}){
m fb}$

The **effective DPS cross section** is:

 $\sigma_{
m eff, \, DPS} = 2.7^{+1.4}_{-1.0} (
m exp)^{+1.5}_{-1.0} (
m theo)
m mb$

while the **effective TPS cross section** is:

 $\sigma_{
m eff,\ TPS} = (0.82\pm0.11)\sigma_{
m eff,\ DPS}$

TRIPLE PARTON SCATTERING WITH ONE OPEN CHARM MESON

$$J/\psi o \mu^+\mu^- \qquad \qquad D^{*\pm} o D^0 \pi^\pm_{
m slow} o K^-\pi^+\pi^\pm_{
m slow}$$

- The open charm mesons have a larger cross section than the J/ψ
- Measurement of open-charm mesons is possible in CMS;
- The **D* meson** is the one that can be reconstructed with the **highest purity**;
- The presence of a **slow pion** in its decay allows us to identify the **charge of the D* meson**.

8

TRIPLE PARTON SCATTERING WITH ONE OPEN **CHARM MESON**

$$J/\psi o \mu^+\mu^- \qquad D^{*\pm} o D^0 \pi^\pm_{
m slow} o K^-\pi^+\pi^\pm_{
m slow}$$

- The open charm mesons have a larger cross section than the J/ψ
- Measurement of open-charm mesons is possible in CMS;
- The **D* meson** is the one that can be reconstructed with the **highest purity**;
- The presence of a **slow pion** in its decay allows us to identify the charge of the D* meson.

A PRELIMINARY STUDY SEEMS TO SUGGEST THAT THIS FINAL STATE IS INDEED PROMISING.

THIS WAS NOT FOR FREE SINCE THERE AREN'T MC **GENERATORS ABLE TO** PRODUCE TPS SAMPLES

I HAVE DEVELOPED A STRATEGY USING TWO **GENERATORS:** HELAC-ONIA AND PYTHIA* The study of multi-parton interactions should be of interest because:

- It can give us important insights into the **structure of hadrons**.
- It provides **information** in a sector that is difficult to probe, such as parton interactions.

The **DPS contribution is becoming increasingly significant** thanks to the increasing luminosity and center-of-mass energy.

Questions remain **open** about the **effective cross-section**:

- Why does it vary?
- How dependent is it on the type of process, kinematics, and energy?

0

20

 $\sigma_{\rm eff,DPS}$ (mb)

EXTRACTED FROM TRIPLE J/ψ

SLIGHTLY SMALLER FOR SOFTER STATES

CMS, $\sqrt{s} = 13 \text{ TeV}$, $J/\psi + J/\psi + J/\psi$ CMS*, $\sqrt{s} = 7 \text{ TeV}$, $J/\psi + J/\psi$ ATLAS, $\sqrt{s} = 8 \text{ TeV}$, $J/\psi + J/\psi$ D0, $\sqrt{s} = 1.96 \text{ TeV}$, $J/\psi + J/\psi$ D0*, $\sqrt{s} = 1.96 \text{ TeV}$, $J/\psi + Y$ ATLAS*, $\sqrt{s} = 7 \text{ TeV}$, $W + J/\psi$ ATLAS*, $\sqrt{s} = 8 \text{ TeV}$, $Z + J/\psi$ ATLAS*, $\sqrt{s} = 8 \text{ TeV}$, $Z + J/\psi$ D0, $\sqrt{s} = 1.96 \text{ TeV}$, $\gamma + b/c + 2$ -jet D0, $\sqrt{s} = 1.96 \text{ TeV}$, $\gamma + 3$ -jet D0, $\sqrt{s} = 1.96 \text{ TeV}$, $\gamma + 3$ -jet CDF, $\sqrt{s} = 1.8 \text{ TeV}$, $\gamma + 3$ -jet UA2, $\sqrt{s} = 640 \text{ GeV}$, 4 -jet ATLAS, $\sqrt{s} = 7 \text{ TeV}$, 4 -jet	This work Ref. ⁶⁰ Ref. ²⁴ Ref. ²² Ref. ⁵⁸ Ref. ⁵⁹ Ref. ⁶⁰ Ref. ⁵⁷ Ref. ⁵⁵ Ref. ⁵⁵ Ref. ⁵⁵ Ref. ⁵⁶ Ref. ⁵⁴ Ref. ⁵¹ Ref. ⁵¹ Ref. ⁵² Ref. ⁵²
UA2, $\sqrt{s} = 640 \text{ GeV}$, 4-jet	Ref. ⁵¹
ATLAS, $\sqrt{s} = 1.8$ TeV, 4-jet ATLAS, $\sqrt{s} = 7$ TeV, 4-jet CMS, $\sqrt{s} = 7$ TeV, 4-jet CMS, $\sqrt{s} = 13$ TeV, 4-jet CMS, $\sqrt{s} = 7$ TeV, W + 2-jet ATLAS, $\sqrt{s} = 7$ TeV, W + 2-jet CMS, $\sqrt{s} = 13$ TeV, WW	Ref. ¹⁵ Ref. ²⁴ Ref. ¹⁹ Ref. ¹⁴ Ref. ¹³ Ref. ¹⁸

HTTPS://WWW.NATURE.COM/ARTICLES/S41567-02

SLIGHTLY LARGER FOR HARDER FINAL STATES

THANK YOU

ON BEAHALF OF CMS COLLABORATION

MARIA ELENA ASCIOTI | PHD STUDENT UNIVERSITY OF PERUGIA MARIA.ELENA.ASCIOTI@CERN.CH MARIAELENA.ASCIOTI@PG.INFN.IT

