CHARMED BARYON MEASUREMENTS IN PROTON-PROTON COLLISIONS AT $\sqrt{s} = 13.6$ TeV WITH THE ALICE EXPERIMENT IN RUN 3

Ruprecht-Karls-Universität Heidelberg

Erice International School of Subnuclear Physics, 18th June 2024

Federica Zanone

Strange charmed baryons decaying to $\Xi^{\pm}\pi^{\mp}$

Strange charmed baryons decaying to $\Xi^{\pm}\pi^{\mp}$

- Establish measurements of all charmed baryons ground states with ALICE
- of charmed hadron-to-hadron production ratios are an effective tool to study hadronization
- decay channels and corresponding Ω_c^0 BR fractions to validate theoretical models
- Available measurements of Ω_c^0 BR fraction for $\Xi \pi$ decay channel by BELLE and LHCb are not in agreement \rightarrow provide an extra independent measurement

MOTIVATIONS

• Hadronization mechanisms are still poorly understood and the hypothesis of fragmentation function universality has been disproved \rightarrow measurements

• Predicting BR is very challenging because of the presence of the surrounding nuclear environment \rightarrow provide measurements of Cabibbo suppressed

ALICE Run 3

- ALICE underwent major upgrades during long shutdown 2 that allow for continuous readout operations
- Enormous stream of data from detectors to the online system, of the order of few TB/s
- Run 3 dates is already orders of magnitude larger than the whole Run 2 sample
- Innovative software framework, data model and analysis submission system, new data taking strategy, different Monte Carlo simulation methods

Analysis framework: O2Physics

- based on arrow tables \rightarrow columnar memory format for flat and hierarchical data
- optimised for bulk operations
- supporting highly modular and extensible data representation
- allowing for vectorized optimisation of analytical data processing

Analysis framework: O2Physics

- based on arrow tables \rightarrow columnar memory format for flat • and hierarchical data
- optimised for bulk operations
- supporting highly modular and extensible data representation
- allowing for vectorized optimisation of analytical data processing

STRANGE CHARMED BARYON RECONSTRUCTION FRAMEWORK

INPUT FILES INFORMATION

STRANGE CHARM BARYON WORKFLOW

Analysis framework: 02Physics

- based on arrow tables \rightarrow columnar memory format for flat • and hierarchical data
- optimised for bulk operations
- supporting highly modular and extensible data representation
- allowing for vectorized optimisation of analytical data processing

STRANGE CHARMED BARYON RECONSTRUCTION FRAMEWORK

INPUT FILES INFORMATION

table
truction time
t ROOT files,
of cascades
racks

STRANGE CHARM BARYON WORKFLOW

DERIVED DATA

- Need to process enormous datasets, much larger than the whole Run 2 statistics
- The analysis submission system imposes limits on single analysis computing resources

Factorize part of the analysis workflow producing an intermediate-step dataset profitable for multiple analyses and providing access to parent input file information only for selected table elements

Analysis framework: 02Physics

- based on arrow tables \rightarrow columnar memory format for flat • and hierarchical data
- optimised for bulk operations
- supporting highly modular and extensible data representation
- allowing for vectorized optimisation of analytical data processing

STRANGE CHARMED BARYON RECONSTRUCTION FRAMEWORK

INPUT FILES INFORMATION

STRANGE CHARM BARYON WORKFLOW

DERIVED DATA

- Need to process enormous datasets, much larger than the whole Run 2 statistics
- The analysis submission system imposes limits on single analysis computing resources

Factorize part of the analysis workflow producing an intermediate-step dataset profitable for multiple analyses and providing access to parent input file information only for selected table elements

RESOURCES NEEDED FOR DIFFERENT CONFIGURATIONS OF THE $\Xi_c^0 \rightarrow \Xi \pi$ ANALYSIS

Reduction factor:	980	Derived data produc
Wall time: Throughput:	1y 34d 482.4 KB/s/core	Full workflow
Wall time:	111d 13h	Analysis on derived o
Throughput:	1.7 MB/s/core	

Remarkable speed up the execution of the analysis!

PWG 2023 rejection factor budget: $5.5 \cdot 10^{-5}$

Ω_c^0 dedicated offline software trigger

NEW MEASUREMENT!

HF filters selectivity on 2023 data (downscale factors not shown)

Monte Carlo studies for charm enriched productions

In Run 3, ALICE takes data in continuous mode

we need a MC simulation that realistically describes the data taking conditions

- Different types of MC available: injected, triggered, gap triggered - Gap triggered MC is the most realistic version
- The gap is needed because the presence of charm affects (worsens) the event reconstruction \rightarrow increasing the number of MB events mitigates the this problem, helping to recover heavy flavour particles ϵ_{RECO} and improving PV reconstruction

Standard (general purpose MC)

Injected

Triggered

Gap-triggered

Monte Carlo studies for charm enriched productions

In Run 3, ALICE takes data in continuous mode

we need a MC simulation that realistically describes the data taking conditions

- Different types of MC available: injected, triggered, gap triggered - Gap triggered MC is the most realistic version
- The gap is needed because the presence of charm affects (worsens) the event reconstruction \rightarrow increasing the number of MB events mitigates the this problem, helping to recover heavy flavour particles ϵ_{RECO} and improving PV reconstruction

Standard (general purpose MC)

Injected

Triggered

Gap-triggered

Make efficient and reasonable use of resources minimising the loss in $\epsilon_{\rm RECO}$ \rightarrow gap 5 configuration

First results - Ξ_c^0 signal extraction and machine learning

- extraction for rare charm baryons
- separation between signal and background
- Hyperparameters are optimised with Bayesian iterations
- background candidates from data

16

First results - Ξ_c^0 signal extraction and machine learning

- Derived dataset for 2022 minimum bias sample
- ~60B events processed (~ $1 pb^{-1}$)
- More than $1.7 \cdot 10^4 \Xi_c^0$ extracted
- Run 2 performance not yet reached

Conclusions

- With an upgraded detector system and software framework, ALICE is collecting and processing an enormous amount of data in Run 3
- Rare strange charm baryon analyses strongly benefit from the availability of such large statistics
- Ω_c^0 dedicated software trigger is applied for event skimming
- New MC simulation strategies for charm enriched productions have been tested
- First results for Ξ_c^0 signal extraction with BDT application

... NEXT

- decay channel

• Analyse larger dataset (2023 p-p sample, $\sim 10 \ pb^{-1}$) • Refine $\Xi_c^0 p_T$ spectrum measurement in the $\Xi \pi$ decay channel Extract Ω_c^0 signal in the $\Xi \pi$ decay channel to provide the hadron-to-hadron production ratio wrt Ξ_c^0 and the BR fraction measurement wrt the Cabibbo-favored

BACKUP

Heavy flavour measurements

HADRONIZATION

Hadronization mechanisms are still poorly understood and the hypothesis of universality of fragmentation functions has been disproved

Measurements of charm hadron-to-hadron production ratios are an effective tool to study hadronization as al the other contributions cancel out

New measurements will help to validate the models

Belle and LHCb Ω_c^0 BR measurements

- BELLE measurement from 2023 (paper)
- $\mathscr{L}_{int} \sim 980 \, \text{fb}^{-1}$ in e^+e^- collisions
- Results:
 - * Evidence for Ω_c^0 signal in $\Omega_c^0 \to \Xi^- \pi^+$ mode with significance 4.5σ
 - * No significant signals of $\Omega_c^0 \to \Xi^- K^+$ and $\Omega_c^0 \to \Omega^- K^+$ found
 - $BR(\Omega_c^0 \to \Xi^- \pi^+)/BR(\Omega_c^0 \to \Omega^- \pi^+) = 0.253 \pm 0.052 \text{ (stat.)} \pm 0.030 \text{ (syst.)}$
 - * $BR(\Omega_c^0 \to \Xi^- K^+)/BR(\Omega_c^0 \to \Omega^- \pi^+) < 0.070$
 - $* BR(\Omega_c^0 \to \Omega^- K^+)/BR(\Omega_c^0 \to \Omega^- \pi^+) < 0.29$
- LHCB measurement from 2023 (paper)
- $\mathscr{L}_{int} \sim 5.4 \, \text{fb}^{-1}$ in pp collisions
- Results:

$$\frac{BR(\Omega_c^0 \to \Omega^- K^+)}{BR(\Omega_c^0 \to \Omega^- \pi^+)} = 0.0608 \pm 0.0051 \text{ (stat)} \pm 0.0040 \text{ (syst)}$$

 $* \frac{BR(\Omega_c^0 \to \Xi^- \pi^+)}{\Omega_c^0} = 0.1581 \pm 0.0087 \text{ (stat)} \pm 0.0043 \text{ (syst)} \pm 0.0015 \text{ (ext)}$ $BR(\Omega_c^0 \to \Omega^- \pi^+)$

 $M(\Omega_c^0) = 2695.28 \pm 0.07 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.30 \text{ (ext)} \text{ MeV}/c^2 \text{ using the Cabibbo-favored } \Omega_c^0 \rightarrow \Omega \pi \text{ decay channel}$

Measured yield:

 $* \Omega_c^0 \to \Omega^- \pi^+ \to 9330 \pm 110$ $* \Omega_c^0 \to \Xi^- \pi^+ \to 2780 \pm 150$ $* \Omega_c^0 \to \Omega^- K^+ \to 425 \pm 35$

Derived data

	AliEn	02		AliEn	02
CPU time:	80d 10h	75d 18h	CPU time:	77d 8h	76d 5h
Wall time:	1y 34d	1y 32d	Wall time:	108d 14h	107d 14h
Throughput:	482.4 KB/s/core	484.6 KB/s/core	Throughput:	1.7 MB/s/core	1.7 MB/s/core
CPU efficiency:	20%	19%	CPU efficiency:	71%	71%
Grid overhead:	Startup: 0.1%	Saving: 0.4%	Grid overhead:	Startup: 0.1%	Saving: 0.6%
CPU cores:		2	CPU cores:		2
Output size:	8.9) GB	Output size:	16.	4 GB
Output size (AO2D only):	8.3	3 GB	Output size (AO2D only):	16.	2 GB
Reduction factor:	19	910	Reduction factor:	9	80
۸na	lveis on papant inpu	t filo	De	nived data product	ion

Analysis on parent input file

Derived data production

	AliEn	02
CPU time:	90d 4h	88d 14h
Wall time:	111d 13h	111d 5h
Throughput:	1.7 MB/s/core	1.7 MB/s/core
CPU efficiency:	81%	80%
Grid overhead:	Startup: 0%	Saving: 0.2%
CPU cores:		2
Output size:	8.1	GB
Output size (AO2D only):	8.0	GB
Reduction factor:		2

Analysis on derived data

Resources needed for different configurations of the $\Xi_c^0 \to \Xi \pi$ analysis

- Size of the input file to be directly processed by the analysers consistently reduced
- Derived data is common for all the • strange charm baryon analyses Increased throughput
 - Total processing time reduced

speed up the execution of the analysis

Ω_c^0 dedicated offline software trigger - tuning the selections

The algorithm loops over the cascades produced in each collisions combining them with a tracks and tags pairs fulfilling a set of selections and with suitable invariant mass

Cascade selections

Charm bachelor selections

Minimum cascade transverse decay radius	0.6 cm	$ \eta _{MAX}$	
Minimum VO transverse decay radius	1.2 cm	$p_{\rm TMIN}$	1.2
Minimum cascade cosPA	0.99	isGlobalTracksWoDCA	
Minimum VO cosPA	0.99	PID nSigma cut VO (TPC TOF)	
Maximum DCA cascade daughters	1 cm	Maximum transverse DCA to PV for $p_{\rm T}$ < 2 GeV/c	C
Maximum DCA VO daughters	1 cm	Maximum transverse DCA to PV for $p_{\rm T}$ > 2 GeV/c	1
Cascade and VO daughters $\left \eta ight _{ m MAX}$	1	Tracks minimum number of TPC clusters	
Minimum $p_{\mathrm{T}\pi\leftarrow\Xi}$	0.2 GeV/c	Tracks minimum number of TPC crossed rows	
Mass tolerance VO and cascade	0.01 GeV/c^2	Tracks minimumTPC crossed rows over findable clusters	
PID nSigma cut VO and cascade daughters (TPC TOF)	3σ	Minimum number of ITS clusters	
Tracks minimum number of TPC clusters	70	Minimum number of ITS inner barrel clusters	
Tracks minimum number of TPC crossed rows	70		
Tracks minimumTPC crossed rows over findable clusters	0.8	Event selection	
Maximum transverse cascade DCA	0.3 cm	Trigger sel8	Т
Minimum cascade <i>D</i> m	0.5 cm	$ z_{\rm PV} _{MAX}$	11
	2 Gev/C		

 Ω_c^0 dedicated trigger selections for $p_{\rm T} > 5 \, {\rm GeV}/c$ - downscale factor 2

 $p_{\rm T}$ cuts are tuned using a Pythia toy simulation of $10^7 \ \Omega_c^0 \text{ decays}$

rue	
cm	

Monte Carlo studies for charm baryon enriched productions

Studies performed for gap 3 (1 triggered event - 2 MB events - 1 triggered event) 5 and 8 using centralized anchored MC productions

Gap 5 is the configuration chosen for charm baryon enriched MC

First results - Ξ_c^0 signal extraction and machine learning

$p_{\rm T}$ differential Ξ_c^0 signal - residuals

$p_{\rm T}$ differential Ξ_c^0 signal - selections

"hf-candidate-selector-to-xi-pi": { "radiusCascMin": "0.59999999999999998", "radiusV0Min": "1.2", "cosPAV0Min": "0.96999999999999997", "cosPACascMin": "0.96999999999999997", "dcaCascDauMax": "1", "dcaV0DauMax": "1", "dcaBachToPvMin": "0.0399999991", "dcaNegToPvMin": "0.0599999987", "dcaPosToPvMin": "0.0599999987", "v0MassWindow": "0.00999999978", "cascadeMassWindow": "0.00999999978", "invMassCharmBaryonMin": "2", "invMassCharmBaryonMax": "3.1000000000000001", "etaTrackCharmBachMax": "0.80000000000000004", "etaTrackLFDauMax": "1", "ptPiFromCascMin": "0.14999999999999999", "ptPiFromCharmBaryonMin": "0.20000000000000000000", "impactParameterXYPiFromCharmBaryonMin": "0", "impactParameterXYPiFromCharmBaryonMax": "10", "impactParameterZPiFromCharmBaryonMin": "0", "impactParameterZPiFromCharmBaryonMax": "10", "impactParameterXYCascMin": "0", "impactParameterXYCascMax": "5", "impactParameterZCascMin": "0", "impactParameterZCascMax": "10",

"ptCandMin": "0", "ptCandMax": "50", "dcaCharmBaryonDauMax": "2", "usePidTpcOnly": "false", "usePidTpcTofCombined": "true", "ptPiPidTpcMin": "-1", "ptPiPidTpcMax": "9999", "nSigmaTpcPiMax": "3", "nSigmaTpcCombinedPiMax": "0", "ptPrPidTpcMin": "-1", "ptPrPidTpcMax": "9999", "nSigmaTpcPrMax": "3", "nSigmaTpcCombinedPrMax": "0", "ptPiPidTofMin": "-1", "ptPiPidTofMax": "9999", "nSigmaTofPiMax": "3", "nSigmaTofCombinedPiMax": "0", "ptPrPidTofMin": "-1", "ptPrPidTofMax": "9999", "nSigmaTofPrMax": "3", "nSigmaTofCombinedPrMax": "0", "nClustersTpcMin": "70", "nTpcCrossedRowsMin": "70", "tpcCrossedRowsOverFindableClustersRatioMin": "0.80 "nClustersItsMin": "3", "nClustersItsInnBarrMin": "1"

ZPV	< 10 cm
sel8	true
TF and ITSROF border cut	true
globalTrackWoDca	true
$\left \eta \right _{\pi \leftarrow \Xi_c^0}$	< 0.8
$p_{\mathrm{T} \pi \leftarrow \Xi_c^0}$	> 0.5 GeV
DCAxyToPV _{\geq}	< 2.0 cm
$ DCAxyToPV_{\pi \leftarrow \Xi_c^0} $	> 0.002 cm
$ n\sigma $ TPC	< 3
K0s rejection	10 MeV

$p_{\rm T}$ differential Ξ_c^0 signal - selections

Toplogical Variable	K_S^0 (Λ and $\bar{\Lambda}$) Cut
V0 transv. decay radius	> 0.50 cm
DCA Negative Track to PV	> 0.06cm
DCA Positive Track to PV	> 0.06cm
V0 Cosine of Pointing Angle	> 0.97 (0.995)
DCA V0 Daughters	$< 1.0 \sigma$
Selection	K_S^0 (A and $\overline{\Lambda}$) Cut
V0 Vertex Type	Generated with Offline Vertexer
Rapidity Interval	y < 0.5 (MC value used for MC analysis)
Proper Lifetime (mL/p)	< 20 cm (30 cm)
Competing V0 Rejection	$5 MeV/c^2 (10 MeV/c^2)$
TPC dE/dx Selection (Real data only)	$< 5\sigma$
Primary Selection (MC Only)	AliStack::IsPhysicalPrimary()
MC Association (MC Only)	PDG code association for V0 and for daughter tra
Tracking flags for daughters	kTPCrefit
Daughter Track Pseudorapidity Interval	$ \eta < 0.8$
Daughter Track N _{crossedrows}	≥ 70
Daughter Track N _{crossed} /N _{findable}	≥ 0.8

Table 2: Selections applied to K_S^0 , Λ and $\overline{\Lambda}$ candidates.

	Table 3: Selections applied to charged Ξ and Ω candidates.		
	Topological Variable	Ξ (Ω) Cut	
	Cascade transv. decay radius R _{2D}	> 0.6 (0.5) cm	
	V0 transv. decay radius	> 1.2 (1.1) cm	
	DCA (bach - PV)	> 0.04 cm	
	DCA (V0 - PV)	> 0.06 cm	
	DCA (meson V0 track - PV)	> 0.04 cm	
	DCA (baryon V0 track - PV)	> 0.03 cm	
	DCA (V0 tracks)	<1.5 σ	
	DCA (bach - V0)	< 1.3 cm	
	cascade cos(PA)	> 0.97	
	V0 cos(PA)	> 0.97	
	V0 invariant mass window	$\pm 0.008~GeV/c^2$	
	Selection	Ξ (Ω) Cut	
	Rapidity Interval	y < 0.5 (MC value used for MC analysis)	
iter tracks	TPC dE/dx Selection (Real data only)	$< 4\sigma$	
	Proper Lifetime (mL/p)	$< 3 \times c\tau$	
	Competing Cascade Rejection (only Ω)	$ M(\Xi) - 1.321 > 8 MeV/c^2$	
	Daughter Track Pseudorapidity Interval	$ \eta < 0.8$	
	Tracking flags for daughters	kTPCrefit	
	Daughter Track N _{TPCclusters}	≥ 70	

$p_{\rm T}$ differential Ξ_c^0 signal - BDT training

pT bin	1 < pT < 4 GeV	4 < pT < 12 GeV
Signal candidates	15 508	5 519
Bkg candidates	15 508	11 038

4 < pt < 12 GeV

Ω_c^0 expected statistics

- Branching ratio from LHCb measurement: $BR(\Omega_c^0 \rightarrow \Xi^- \pi^+)/BR(\Omega_c^0 \rightarrow \Omega^- \pi^+) = 0.1581 \pm 0.0087 \text{ (stat)} \pm 0.0043 \text{ (syst)} \pm 0.0015 \text{ (ext)}$
- $BR(\Omega^- \to \Lambda K^-) \sim 0.678 \to BR(\Xi^- \to \Lambda \pi^-) \sim 0.999 \to \sim 47\%$
- Q-value: 0.884 \rightarrow 1.235 GeV \rightarrow increase in available phase-space and increase in $p_{\pi} \rightarrow$ increase in $A \cdot \epsilon$
- Strange baryons reconstruction performance (Run2) $\rightarrow \sim 2$
- Increase in \mathscr{L}_{int} (Run2 ~ 30 nb^{-1})

Run2 yield* $\Omega_c^0 ightarrow \Omega \pi$	$2.6 \cdot 10^2$
Branching ratio Ω_c^0	16%
Branching ratio cascade	3/2
Cascade reconstruction	2
Luminosity (2022 data sample)	$\sim 5.9 \cdot 10^2$
Luminosity (2023 data sample)	$\sim 3 \cdot 10^2$

* raw yield after BDT for $2 < p_T < 12 \ GeV/c$

The order of magnitude of the Ω_c^0 yield in the $\rightarrow \Xi \pi$ decay channel is comparable to the one in the $\rightarrow \Omega \pi$ decay channel

2023 data sample to be skimmed

Ξ_c^0 efficiency in Run2

From analysis notes of $\Xi_c^0 \to \Xi \pi$

STATISTICS $30 \ nb^{-1} \rightarrow \sim 2B$ events ~3800 Ξ_c^0 (after BDT, before $A \cdot \epsilon$ correction)

