

The high-speed opto-electrical conversion system for the readout of the ATLAS ITk Pixel upgrade

Silke Möbius

University of Bern - Laboratory for High Energy Physics

2024-06-20 International School of Subnuclear Physics 2024, Erice

o UNIVERSITÄT BERN AEC

High Luminosity LHC upgrade

- LHC and LHC experiments are currently running in Run 3
- HL-LHC period will start in 2029 and is supposed to accumulate $\int L dt \approx 4000 \, \text{fb}^{-1}$

High Luminosity LHC Upgrade

 \Rightarrow Replacement of detectors of the ATLAS experiment to

- have higher granularity
- have higher bandwidth
- be 4 10× radiation harder.

Present Inner Detector pixel technology cannot cope with HL-LHC challenges S Möbius Opto system for the ATLAS ITk Pixel upgrade — Erice — 2024-06-20

High Luminosity LHC Upgrade

Upgrade to enhance physics reach: higher luminosity (L) and energy (E) \rightarrow HL-LHC

	LHC	HL-LHC (2026)
E	7 - 13.6 TeV	14 TeV
L	$2 imes10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	$7.5 imes10^{34}\mathrm{cm^2s^{-1}}$
pile-up $<\mu>$	pprox 50	pprox 200

 \Rightarrow Replacement of detectors of the ATLAS experiment to

- have higher granularity
- have higher bandwidth
- be $4 10 \times$ radiation harder

Present Inner Detector pixel technology cannot cope with HL-LHC challenges S. Möbius Opto system for the ATLAS ITk Pixel upgrade — Erice — 2024-06-20

ATLAS Tracker Upgrade

TL-PHYS-PUB-2021-024 Opto system for the ATLAS ITk Pixel upgrade — Erice — 2024-06-20

ATLAS Tracker Upgrade

ATLAS ITk Pixel Detector

ATLAS ITk Pixel Detector

Opto system for the ATLAS ITk Pixel upgrade - Erice - 2024-06-20

z [mm]

ATLAS ITk Pixel Detector

- Outer Barrel:
 - 3 layers of flat staves and inclined rings
 - 4772 quad modules, 6.94 m^2
- Outer End Cap
 - 3 layers of rings
 - 2344 quad modules, 3.64 m^2
- Inner System (Replacable)
 - 2 layers of flat staves and rings
 - Quad and triplet modules
 - 2600 modules, 2.4 m^2

Pixel Detector Modules

S. Möbius

Pixel Detector Modules

- Hybridisation of FE-chip (readout chip) and sensor \rightarrow low pitch bump bonding $50\times50\,\mu\text{m}^2$
- Flex attachment to hybridised module with 100 µm precision
- Large temperature range: operating at $-25\,^\circ\text{C}$ to $-10\,^\circ\text{C},$ warmed up to $20\,^\circ\text{C}$ during maintenance

ITk Pixel Readout System

S. Möbius

ITk Pixel Readout System

S. Möbius

ITk Pixel Readout System

S. Möbius

Optosystem

Losses need to be below 20 dB from FE-chip to GBCR including connectors, flexes and cable:

- Electrical signal recovery on Optoboard in Optobox by GBCR
- Serialisation of electrical signals by IpGBT
- Opto-electrical conversion by VTRx+

- Readout of FE-chip at 1.28 Gb/s with up to 4 links per chip depending on position in system
- Uplink sharing on module used on all layers to reduce material, sharing of downlinks
- Up to 6 data links per lpGBT from 1-6 modules sharing one 10.24 Gb/s fibre, downlink 2.56 Gb/s per lpGBT
- Optical fibres to readout PCs with FELIX readout boards

Validation of the Optosystem

LABORATORIUM FÜR HOCHENERGIEPHYSIK LHEP UNIVERSITÄT BERN

Tests performed in the past

- Tests of the first prototypes of the optoboards
- Different data transmission chains: from FELIX card to readout chip with different cables and connectors
- Irradiation of components of the data transmission chain
- Experimental verification of the mechanical concept
- Tests and simulation of the thermal management

S. Möbius

Validation of Data Transmission Chain

Bit Error Ratio (BER) tests on data transmission chain with final components:

- Using pseudorandom signal
 - Pattern checker on the IpGBT can execute a BERT
 - Result is sent via optical fiber to FELIX
- + Using 64b/66b FE-chip idle signal \rightarrow test on realistic data stream
 - \Rightarrow Multiple BERTs are performed, changing the parameters of the equalizer of the GBCR

Optoboard Results

BER tests with 95% CL: BER limit $< 10^{-12}$, for several configurations, using FE-chip idle signal

Cable type I bundle

Cable type II bundle

- Multiple System Test Setups at different institutes
- Each testing site gets one detector support structure with modules and an Optobox

- Data transmission chain working within required BER limits
- Large batch of Optoboards to arrive soon in Bern for testing
- Final system test planning is under way

Thank you for your attention!