
Early universe holographic
first order phase transition

within Composite Higgs bosonmodel

Andrey Shavrin

June 20, 2024

under the supervision of Prof. Oleg Novikov
Saint-Petersburg State University, Th. Phys. Dep.

EMFCSC International School of Subnuclear Physics
60th Course: NEWS FROM THE FOUR INTERACTIONS

Erice, Italy



AdS/CFT correspondence

Some common things about AdS/CFT 1/4

Perturbation theory
〈φ . . . φ〉 = 〈φ0 . . . φ0〉+ λ〈φ1 . . . φ1〉+ λ2〈φ2 . . . φ2〉+ . . .+non-analytical?+solitons?

QFT renormalization−−−−−−−−−→ CFT

AdS/CFT correspondence

CFT AdS/CFT←−−−− dual theory

ZCFT[J]
AdS/CFT
=

correspondence
ZAdS

quasiclassical
≈
approximation

e−SAdS
∣∣
∂AdS

strong coupled λCFT � 1with λCFT ∼ 1
λAdS

dual theory λAdS � 1weak coupled



Correlatorswithin AdS/CFT

Some common things about AdS/CFT 2/8

Solutions of EoM:
δSAdS[ψ]
δψ

= 0

Near the conformal boundary: ψ(x, z) ∂AdS−−−→
z→0

zd−∆ ψ0(x) + z∆ ψ1(x)

CFT sources: J ∼ ψ0(x)with weight d −∆

Solutions: ⇒ ZAdS
∣∣
∂AdS[ψ0] = ZCFT[J] =

∫
D[*fields of CFT*] e−SCFT−O·J

Gn = 〈O . . .O〉 =
(
δ

δJ

)n
logZ[J]

∣∣∣
J=0

= −
(

δ

δψ0

)n
SAdS[ψ] = −

(
δnSbulkAdS
δψn

0

)
︸ ︷︷ ︸
=0 due to EoM

−

(
δnSborder∂AdS
δψn

0

)



Electroweak baryogenesis (Motivation)

Motivation 3/12

Baryon asymmetry problem –matter more than anti-matter

Sakharov’s conditions ⇔ first order phase transition (i.e. CPT-violation)

〈φ〉 6= 0〈φ〉 = 0

broken symmetryunbroken symmetry

SU(2)L × U(1)Y → U(1)em is a crossover (not a PT); BSM physics?



Composite Higgsmodel

Sector of matter 4/12

L = LSM + LCH + LInt., LCH – strongly coupled with G inner symmetry(
G invariantvacuum

) spontaneous
−−−−−−−−−−→

breaking

(
H invarianе

vacuum
)
⇒ Goldstone bosons 3Higgs boson

phase transition

ΣIJ = 〈Ψ̄IΨJ〉 = ξ>
[(

04×4 0
0 ς

)
+ ηiT̃i

]
ξ

SO(5)→SO(4)−−−−−−−−→
low energy

(
04×4 0
0 ς

)
⇒ symmetry

breaking

ΣIJ is a condensate of the SO(5)-inn.sym. fundamental fieldsΨ;
ξ is NB-bosons, η is “radial” fluctuations, ς is background field



HolographicModel

Sector of matter ≈ π2

2 /12

Dual theory: SAdS = Sgrav.+φ + SX + Sgauge + S“SM” + S int. “SM” + X
AdS/CFT∼ SSM + CH

Sgrav.+φ, SX and Sgauge can have a PT
∣∣∣ S“SM” and S int. “SM” + X shouldn’t have a PT

Matter sector: SX =
1

ks

∫
d5x
√
|g|eφ

[
1

2
gab Tr

(
∇aXT∇bX

)
− VX(X)

]

VX(X) = Tr
(
− 3

2L2
XTX − α(XTX)2 + β(XTX)3 +O(X8)

)
XIJ ∝

√
N

2π
JIJz +

2π√
N
ΣIJz3 + . . . , JIJ are sources for CH condensateΣIJ

Our contribution:
(and the following

for the matter sector)
Veff. CH[ΣIJ]

∣∣
extrema︸ ︷︷ ︸

4-dimensional

AdS/CFT
≈ SX[XIJ; gfixedab , φfixed]

∣∣∂AdS
JIJ=0︸ ︷︷ ︸

dual 5-dimensional



Phase transition

PT and GW 6/21

∂VCH
eff

∂〈ϕ〉

∣∣∣
〈ϕ〉0

= 0 ⇒
(
〈ϕ〉0, Veff

∣∣
〈ϕ〉0

)
Effective potential extremal values and the
positions allow one to judge about PT:

trivial minimum (vacuum) only⇒
there is no PT;
non-trivial true vacuumwith the
potential barrier⇒ 1-st PT;
non-trivial true vacuumwithout a
potential barrier⇒ there is no PT.

The extrema of the effective quantum potential Veff: T is the plasma temperature,
〈ϕ〉 is the vacuum expectation.

Unscaled schematic illustration! Data in real scale are Phys. Rev. D 108, 115011.



Observations

PT and GW 7/26

Picks of the GW spectrum estimated within Holographic Composed Higgs model. There
is only the scalar part produced during initial collisions of the bubble walls (i.e. sound
and turbulence contributions are not currently included in the rough estimate.)



Large D limit

Sector of gravity 8/37

Dual theory: SAdS = Sgrav.+φ + SX + Sgauge + S“SM” + S int. “SM” + X

SX is considered (without fluctuations); Sgrav.+φ and Sgauge are left

Sgrav.+φ =
1

l3P

∫
d5x
√
|g|e2φ

[
− R + 2|Λ| − 4gab∂aφ∂bφ− Vφ(φ)

]

Sgrav.+φ within large D limit: gab = g(0)ab +
1

D
g(1)ab +

1

D2
g(2)ab + . . . [Emparan’20]

near-AdSd (Poincaré patch): A(z) = 1+o(eD), B(z) = 1+o(eD), f (z) = 1−
(

z
zH

)D−1

+O(eD)

ds2 = A(z)
(
−f (z)dt2 + dz2

f (z)
+ B(z) dΩD−2

)
D→∞−−−→ l2

D2

(
−y2dτ2 + dy2

)
+o(e−D)dΩD−2

The simplest case for dilaton in AdS φ′′−(φ′)2+m2(φ2+2φ) = 0 no Lie symmetries



Large D limit for black branes andGHY

Sector of gravity 9/37

For the black brane with normal nA, tangent velocity uA and extrinsic curvature KAB(
∇2uA
K
− ∇AK

K
+ uAKAB − uB∇BuA

)
PA
C = O

(
1

D

)
, PAB = δAB + uAuB

for “flat” metric ηAB (i.e. without any horizon) [Bhattacharyya’16]

gAB = ηAB +
(nA − uA)(nB − uB)

ψD−3
+O

(
1

D

)
, ψ

∣∣
horizon = 1 is a scalar function

Sgrav. =
∫
M

R dVolD︸ ︷︷ ︸
EH without BH

no PT

+

∫
∂M

K dVolD−1︸ ︷︷ ︸
GHY

with PT

1 ∆Fgrav ∝ ∆SGHY; 2 Smatter[gAB]; 3 S.T. with D8/D̄8/D4.



Effective CFTwithin large D limit

Sector of gravity 93
4 /12

∫
dd+1x

√
−g

16πGd+1

(
R +

d(d − 1)

L2
− L2

g2s
F2
)

︸ ︷︷ ︸
Einstein-Maxwell RN-AdSd+1

→
∫

d2x
√
−he−2ψ

16πG2

(
R2 −

1

g2s
F2 + 4(∇ψ)2 + 1

L̃2

)
︸ ︷︷ ︸

Einstein-Maxwell-dilaton RN-AdS2

Tab∣∣
∂RN-AdS2

=
2√
−h

δS
∣∣
∂RN-AdS2
δhab

; asymptotic diffeomorphism
(gauge invariant) xµ → xµ + εµ

(δε + δΛ)Ttt = usual
transformation +

anomalous
term , Aµ → Aµ + ∂µΛ

anomalous
term ⇒ c =

3

2πG2
=

3Ωd−1

2πGd+1
rd−1
0 ⇒ sCFT =

π3

3
Tc =

1

4G2

(
by Cardy
formula

)
CFTd=1 reproduces

Bekenstein-Hawking for RN-AdSd+1
s =

π3

3
Tc =

1

4G2
=

Area
Gd+1

[Guo’16]



Hawking-Page PTwithin large D limit eff. CFT

Sector of gravity almost there/12

*something that looks like a conclusion*
Fthermal AdS = −pV

Hawking-Page−−−−−−−−−→
phase transition

FBH = M − TS − µQ− pV

1. Sφ+grav + Sgauge asymptotic RN-AdSd+1 (unknown) solutions
(or “near-AdS×any-compact” for top-down approach),

2. large D−−−−→ RN-AdS2 (RN-AdS3) solutions in leading 1/d order,

3. border−−−−−−→
asymptotic

central charge of CFT1 (CFT 2),

4. Cardy’s−−−−→
formula

free energy and Hawking-Page phase transition (in RN-AdSd+1),

5. AdS/CFT∼ confinement/deconfinement-like PT for CHmodel
(as it works for AdS/QCD).



Thank you for your attention!

Phys. Rev. D 108, 115011 (matter sector only)

System of units: 1 = c = h̄ = kB = π = e = i = −1 = 2kg



Holographicmodel

Backup slides 13/12

LCH – strongly coupled ⇒ consider N� 1 ⇒ ZCH[J] = ZAdS[J]

The dual theory: ZAdS[J] ∼ exp
(
− SAdS[J]

)
is weakly coupled ⇒ quasiclassical limit

The asymptotic behavior near the conformal border ∂AdS of the dual theory fields
defines the sources of the CH operators (i.e. the correlator functions)

XIJ
z→0∼

√
N

2π
JIJz +

2π√
N
ΣIJz3 + . . . XIJ : AdS5

dual⇐⇒ ΣIJ : R1,3

Holography is the duality between strongly coupled theory on the border
andweakly coupled (quasiclassical) bulk theory.

F = −T logZCH ∼ TSAdS ∝ Vol4 · F In homogeneous case (χ = χ(z)): F ∝ Veff[χ]



Finite temperature

Backup slides 14/12

conformal boundary BH horizon
∂AdS

AdS bulk
t
~x

z

T ∼ 1
z0 ≡ gravity at the horizon

zHorizon

Z[J] =
∫
D[. . .]e−S−O·J AdS/CFT

= exp
(
−SAdS[ψ]

∣∣
z=0

)
, J

AdS/CFT
= ψ0(x), 〈O〉 AdS/CFT

= ψ1(x)

EoM solutions ∂AdS⇒
asymptotic

boundary part S∂AdS
quasiclassical⇒
approach

CFT generating function



Action of the holographicmodel

Backup slides 15/12

Stot = Sgrav+φ + SX + SA + SSM + Sint, SA = −
1

g25

∫
d5x
√
|g|eφgacgbdFabFcd

Sgrav+φ =
1

l3P

∫
d5x
√
|g|e2φ

[
− R + 2|Λ| − 4gab∂aφ∂bφ− Vφ(φ)

]
, a, b = 0, . . . 4

Sint = ε4
∫
z=ε

d4x
√
|g(4)|

[
cYBµ Tr

(
TYAµ

)
+ cWWk,µ Tr

(
TkAµ

)
+ Lψ

]

SX =
1

ks

∫
d5x
√
|g|eφ

[
1

2
gab Tr

(
∇aXT∇bX

)
− VX(X)

]
, ∇aX = ∂aX + [Aa, X], Aa = 0

VX(X) = Tr
(
− 3

2L2
XTX − α

4
(XTX)2 + L2

β

6
(XTX)3 + O(X8)

)
L · XIJ ∼

√
N

2π
JIJ z̃ +

2π√
N
ΣIJ z̃3 + . . .



Geometry

Backup slides 16/12

Sgrav+φ =
1

l3P

∫
d5x
√
|g|e2φ

[
− R + 2|Λ| − 4gab∂aφ∂bφ− Vφ(φ)

]
, a, b = 0, . . . 4

ds2 =
L2

z̃2
A(z̃)2

(
f (z̃)dτ2 +

dz̃2

f (z̃)
+ d~x2

)
, φ = φ(z̃)

f = 1− z̃4

z4H
, φ = φ̃2z̃2, zH =

1

πT
.



Effective field theory

Effective theory approach 17/12

Z[J] =
∫
Dφ e−S−J·φ =: eW[J]

Γ[〈φ〉] = W[J]− δW[J]
δJ
· J =

∫
X
ddx
(

Keff[∂〈φ〉]︸ ︷︷ ︸
=0 if 〈φ〉=const

+Veff[〈φ〉]
)

– effective action

Effective potential: Veff =
1

Vol4
Γ

Equation of motion (EoM):
δΓ

δ〈φ〉
= J

〈φ〉=const
=

δVeff
δ〈φ〉

J=0
= 0 gives extrema condition



Effective potential

Effective theory approach 18/12

Extrema condition: Veff
∣∣
extrema = Veff

∣∣
J=0
⇔ G0;

AdS/CFT: G0 ⇐ boundary term of dual theory S∂AdS

VolX Veff
∣∣
extrema = G0 = W[J = 0]

AdS/CFT
= SAdS

∣∣ψ0=0

∂AdS

Extrema condition & duality: J = ψ0 = 0; duality: 〈φ〉 = ψ1

δVeff
δ〈φ〉

AdS/CFT
=

δ

δψ1

(
S[ψ]

∣∣
∂AdS

) ∣∣∣
ψ0=0

= 0
(
with assumption

〈φ〉=const

)
gives vacuum expectation values:

{
〈φ〉min 1, 〈φ〉min 2, . . .

}
—possible vacuums

Extrema positions and values
{(
〈φ〉min i, Veff[〈φ〉min i]

)}
⇒ phase transitions



GravitationalWaves

Effective theory approach 61/12

The spectrum of the gravitational waves can be estimated as
(within the approach of relativistic velocity of the bubble walls vw ∼ 1)

ΩGWh2 = 1.67 · 10−5κ∆

(
β

H∗

)−2( α

1 + α

)2 ( g∗
100

)− 1
3

Only scalar waves! Soundwaves and turbulence are not included!
We estimate only scalar waves produced during initial collisions.

f0 = 1.65 · 10−5Hz · f∗
β

β

H∗

T
0.1TeV

( g∗
100

) 1
6 Hz

(ΩGWh2, f0)-curve is the estimation GW amplitude (peak value).
It does not contain the spectral shape S(f0) (in this case S(f0 = f peak0 ) = 1).



Temperature estimations

Effective theory approach 62/12

Experimental restrictions ⇔ mass of the lightest predicted particle.

ΣIJ = ξ>
[(

04×4 0
0 ς

)
+ ηiT̃i

]
ξ

AdS/CFT∼
dual to

XIJ →
(
04×4 0
0 χ

)
mη ∼ mδχ fluctuation mass∼ slope of the “hat”.

χ(z)→ χ(z)+δχ(t,~x, z) ⇒ EoMz[χ]→ EoMt,~x,z[χ+δχ]
∂AdS⇒ 2m2 = φ2

T =
1

π

1

zH
⇒ T =

m
π

√
2

φ2
, z2H =

φ2
2m2



Bubble free energy

Effective theory approach 63/12

Free energy of a bubble: F[Veff]
thin walls
=
approximation

4πR2µ− 3π

4
R3 (Fout −Fin)

FC
def
= F(RC): if R > RC,

bubbles grow and PT occurs.

β

H∗
∼ FC

T
+O(T)

1/β ∼ appear→ collide time
1/H∗ ∼ universe expansion

v4∼10−1�1, C∼1

103 &
β

H∗
& 105



Holographic effective potential

Effective theory approach 64/12

ZCH[J] =
∫
Dϕ exp

(
−S[ϕ]−

∫
d4x ϕ(x) J(x)

)
def
= e−W[J]

〈ϕ〉 = δW[J]
δJ

∣∣∣∣
J=0

, Γ[〈ϕ〉] = W[J]−
∫

d4x
δW[J]
δJ(x)

J(x) – Effective Action

EoM:
δΓ

δ〈ϕ〉
= J

extrema condition

Homogeneus
Solution ⇒ 〈ϕ〉 = constR1,3 ⇒ Γ = −Vol4Veff —

Effective
Potential

Z[J]
AdS/CFT
=

correspondence
ZAdS

quasiclassical
≈
approximation

e−SAdS
∣∣
∂AdS — quasiclassical

non-perturbative

Veff = −
1

Vol4
SAdS

∣∣∣
∂AdS

— boundary term of the bulk theory
defines quantum effective potential



“Extrema” curves

Effective theory approach 140/12

δSχ
δχ

= 0 ⇒ χ
z→0−−→ J z +

(
σ −

(3
2
J3 + φ2J

)
log z

)
z3 + o(z5) — give the sourses

for CFT operators

Knowing the extrema of the effective potential and its values at these points,
we can judge abut the phase transition

Veff = −
1

Vol4
Sχ
∣∣∣
∂AdS

⇒
from EoM
for effective

action
: Vol4

δVeff
δ〈ϕ〉

= J ⇒ extrema condition is
absence of sources ⇒ J = 0

“extreme” solutions︷ ︸︸ ︷
χ

z→0−−→ σz3 + o(z5) must give

extrema︷ ︸︸ ︷
δVeff
δ〈ϕ〉

= 0 ⇒ a new condition
for φ2 and 〈ϕ〉

T ∼ 1√
φ2
,

δVeff
δ〈ϕ〉

= 0 =
δ

δσ
Sχ
[
χSol.(z; J, σ)

]∣∣∣
J=0

⇒ {σ1, . . . , σn} – extrema

σ is (source) dual to 〈ϕ〉, vacuum average of the effective theory



Nucleation ratio

Effective theory approach 141/12

Baryogenesis generates enough asymmetry (enough efficient)
if there is one bubble per Hubble volume

Nucleation
Ratio : AT4e−

FC
T︸ ︷︷ ︸

Bubbles produced
per time×space volume

∼ H4(T) =
(

T2

MPl

)4

– Expansion of
the Univerce︸ ︷︷ ︸

1/
(
Hubble time× volume

)
F = F[〈ϕ〉,R] – Free energy of the bubble; R is the radius of the bubble

Hubble horizon (time, volume, radius) — speed of receding object behind it is greater than the
speed of light (Don’t confuse with cosmological horizon)

Bubble appears with a certain size. It defines with “micro-physics”.
If its radius is grater, then critical one ∂F

∂R

∣∣
RC

def
=R

, the bubble grow. Otherwise, it bursts.

It gives FC
def
= F(RC) and defines nucleation ratio and “viability of the model”.



Estimations of the nucleation ratio

Effective theory approach 142/12

Γ ∼ H4
∗,

Γ

m4
∼ H4

∗
m4
∝ m4

MPl
; FC is defined with an error, so e

FC
T has large error



Potentials of CFT and the dual theory

Effective theory approach 143/12

Vχ = a2χ2 + a4χ4 + a6χ6, a2 < 0, a4 < 0, a6 > 0 no barrier
Veff = b2〈ϕ〉2 + b4〈ϕ〉4 + b6〈ϕ〉6, b2 > 0, b4 < 0, b6 > 0 there’s a barrier

in details:
Veff = Veff[〈ϕ〉] describes a quantum objects at the border. Vχ is a dual classical
potential in the bulk.

Veff = − 1
Vol4 SAdS

∣∣∣
∂AdS

includes the solutions of the EoM δSχ
δχ=0 in bulk. In other

words, Veff includes physics of AdS



Conditions for the dual theory potential

Effective theory approach 144/12

Vχ(χ) =
m2

2
χ2 − D

4L2
λχ4 +

λ2γ

6L2
χ6 is the expantion of a more general theory

Suggestions:
The potential Vχ always has true vacuumwith Emin (Vχ

χ→±∞−−−−−→∞). So wemay use
any even power χn instead of the last term χ6.
The expansion of Vχ has certain sign of the second term λ > 0
(the first onem2 chosen for the theory to be conformal in AdS).
Higher orders of the expansion don’t give newminima at the considered
temperatures.

The certain parametrization has been chosen with respect to the “symmetries”

“Scale invariace”,
defining

the coefficents
:

L→ L′

χ→
√
λχ

;
Conformality near
the AdS border

(“correct” conformal weights)
:
∆− = 1
∆+ = 3

⇒ m2 = − D
3L2

D is for the Large D limit. But its usage doesn’t give any results.
(to keep interaction constants finite at D→∞)



SM - CHmodel interactions

Effective theory approach 145/12

F
thin walls
=
approximation

4πR2µ− 3π

4
R3 (Fout −Fin) — physical units are required

Fix the Parameters (Interaction with Standard Model – bulk gauge fields)
Physical Units (Infrared Regularization and finite temperature – “radial”
heavy fluctuations)

Wα
µ J

αµ
L + BµJµY ⇔ Jµ ∼ AM – bulk G gauge field

The physical values can be estimated without gauge field:

ΣIJ = 〈Ψ̄IΨJ〉 = ξ>
[(

04×4 0
0 X

)
+ ηiT̃i

]
ξ ⇔ 1

T
∝
√
φ2 ∼ µIR ∼ mη & 10 TeV

mη ⇐ X → X + δX – correction of the background field ⇒ η – pNG boson



CH gauge field

Effective theory approach 146/12

L = LSM + LCH + Bµ Tr
(
TY Ĵµ

)
+Wk,µ Tr

(
Tk Ĵµ

)
+
∑
r
ψ̄rOr + h.c.︸ ︷︷ ︸

=Linteractions

SO(5)× U(1) : AM = AKMT
K + AM,YTY

SO(5)→ SO(4) : AKMT
K︸ ︷︷ ︸

∈SO(5)

→ AaMT
a︸ ︷︷ ︸

∈SO(4)

+ AiMT
i︸︷︷︸

∈SO(5)/SO(4)

SO(4) ∼= SU(2)× SU(2) : AKMT
K = Ak,LM Tk

L︸ ︷︷ ︸
∈SU(2)L

+ Ak,RM Tk
R︸ ︷︷ ︸

∈SU(2)R

conserved currents: Ĵµ
dual⇐⇒ Aµ(t, x, z)

∣∣∣∂AdS
z=0

, holographic gauge: Az = 0

O dual⇐⇒ J (A,Ψ, φ, . . .)— composite operators of the CH fields
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