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Introduction: gravity as the square of gauge theory

gµ⌫ Aµ
a A⌫

b

• Is gravity the double copy of the other fundamental forces of Nature?
[Feynman; Papini; Kawai, Lewellen, Tye; Berends, Giele, Kuijf; Bern, Dixon, Dunbar, Perelstein ,

Rozowsky. . . ]

• Renaissance: Bern–Carrasco–Johansson Colour–Kinematics (CK) duality
conjecture and double copy of gauge theory and gravity scattering amplitudes
[Bern, Carrasco, Johansson ’08, ’10; Bern, Dennen, Huang, Kiermaier ’10]
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Introduction: colour-kinematics duality

Ñ Physical observables tested at particle accelerators (e.g. Large Hadron Collider)

Ñ New insights into the underlying theories themselves
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Introduction: colour-kinematics duality

Colour numerators ci „ fab
c
fcd

e

A
n,L
YM

“
ÿ

iPcubic diag

1

Si

ª

L

cini

di

Kinematic numerators ni „ "µp
µ ` ¨ ¨ ¨

Bern-Carrasco-Johansson colour-kinematics duality conjecture 2008:

ci ` cj ` ck “ 0 ñ ni ` nj ` nk “ 0

Proven at tree level [Stieberger ’09; Bjerrum, Bohr, Damgaard, Vanhove ’09; Du, Teng ’16; Bridges, Mafra

’19; Mizera ’19; Reiterer ’19. . . ]

Conjectured at loop level with highly non-trivial examples [Bern, Carrasco, Johansson ’08 ’10;

Carrasco, Johansson ’11; Bern, Davies, Dennen, Huang, Nohle ’13; Bern, Davies, Dennen ’14. . . ]
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Introduction: a question

Colour-kinematics duality exposed via powerful on-shell lens cf. Zvi Bern’s lectures

Very hard to see at the level of field theory and action pricinples

Having discovered colour-kinematics duality on-shell can we now go back off-shell and
perhaps learn something new?

There is a mathematically precise understanding of colour-kinematics duality at the
level of actions that can be used to understand new and old examples
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Introduction: categorification

2-arrows form a group under horizontal composition

‚ ‚ ‚ “ ‚ ‚

g1 g1
1

g1
2

g1g
1
1

g2g
1
2

g2

�˝�1�1�

2-arrows form a groupoid under vertical composition

‚ ‚ “ ‚ ‚

g

g2

g1

g

g2

�

�1
�1�

Interchange law: horizontal and vertical composition are coherent

‚ ‚ ‚

Lie 2-group Ñ Lie 2-algebra Ñ strict 2-term L8-algebra
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Introduction: punchline

Colour-kinematics duality
Symmetry (possibly anomalous) of action with kinematic (homotopy) Lie algebra
derived from underlying (homotopy) BV⌅-algebra

[Borsten, Jurčo, Kim, Macrelli, Saemann, Wolf (BJKMSW) ‘20, ‘21, ‘22, ‘23]

• Self-dual (super) Yang–Mills theories in D “ 4

• (Super) Yang–Mills theories in all dimensions

• M2-brane world–volume theories

Double copy
Gravity “ gauge ˆ gauge Ñ tensor product of BV⌅-algebras

[BJKMSW ‘20, ‘23; see also Bonezzi, Chiaffrino, Díaz–Jaramillo, Hohm ’23]

• Bi-form gravity in D “ 2 ` 1

• Cubic pure spinor action for supergravity
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Manifesting colour-kinematics duality

in the Batalin–Vilkovisky formalism



Manifest colour-kinematics duality of tree-level physical S-matrix

There is a Yang–Mills action such that the Feynman diagrams yield amplitudes
manifesting colour-kinematics duality for tree-level amplitudes:

AlA ` BAAA ` l
l
AAAA ` B3

l2
AAAAA ` ¨ ¨ ¨

[Bern, Dennen, Huang, Kiermaier ’10; Tolotti, Weinzierl ’13]
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Manifest colour-kinematics duality of tree-level physical S-matrix

This can be strictified to have only cubic interactions through infinite tower of
auxiliaries [Bern, Dennen, Huang, Kiermaier ‘10; Tolotti, Weinzierl ’13; BJKMSW ’21]

S
YM

on-shell CK
“ tr

ª
d
D
x
1
2Aµ lA

µ ` 1
2gBµA⌫ rAµ

, A
⌫ s

` 1
2B

µ⌫ lBµ⌫ ´ gpBµA⌫ ` 1?
2

B
Bµ⌫qrAµ

, A
⌫ s

` C
µ⌫ l C̄µ⌫ ` C

µ⌫ l C̄µ⌫ ` C
µ⌫� l C̄µ⌫� `

` gC
µ⌫ rAµ, A⌫ s ` gBµCµ⌫rA⌫ , As ´ g

2 BµCµ⌫�rBr⌫As, A�s
` gC̄

µ⌫
`
1
2 rB

C̄�µ, B�
A⌫ s ` rB

C̄�⌫µ, A
�s˘ ` ¨ ¨ ¨

Purely cubic colour-kinematics duality manifesting Feynman diagrams:

A
n,0
YM

“
ÿ

i

cini

di
s.t. ci ` cj ` ck “ 0 ñ ni ` nj ` nk “ 0
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Manifest colour-kinematics duality of tree-level BRST extended S-matrix

To lift to loop-level we should include off-shell unphysical/ghost modes in the external
states so that we can glue trees into loops

Extend CK-duality to off-shell unphysical/ghost modes in the external states, the full
BRST-extended state space

pAµ
a
, b

a
, c

a
, c̄

aq

[Anastasiou, LB, Duff, Hughes, Nagy, Zoccali ’14 ’18; LB, Nagy ‘20; BJKMSW ’20, ’21, ’22]
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Manifest colour-kinematics duality of tree-level BRST extended S-matrix

Longitudinal gluons pi ¨ "i �“ 0 on external states ñ

colour-kinematics duality fails

Compensate for these failures with new BRST-exact vertices [BJKMSW ’20]:

S
YM

on-shell BRST-extended CK
“ S

YM

on-shell CK
` Q CK

S
YM

BRST-extended CK
“ S

YM

on-shell CK
`

ª
d
D
x
1
2 balb

a ´ c̄alc
a

´ K
µ
1alK̄

1a
µ ´ K

µ
2alK̄

2a
µ ´ gfabcc̄

aBµpAb
µc

cq
´ 1

2B
µ⌫
a lB

a
µ⌫ ` gfabc

´
BµAa

⌫ ` 1?
2

B
B

a
µ⌫

¯
A

µb
A

⌫c

´ gfabc

!
K

aµ
1 pB⌫

A
b
µqAc

⌫ ` rpB
A

a
qAbµ ` c̄

aBµ
c
bsK̄1c

µ

)

` gfabc

!
K

aµ
2

”
pB⌫BµcbqAc

⌫ ` pB⌫
A

b
µqB⌫cc

ı
` c̄

a
A

bµ
K̄

2c
µ

)
` ¨ ¨ ¨

Proof is inductive and constructive: BRST colour-kinematics duality up to n-points
implies colour-kinematics duality up to pn ` 1q-points
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Off-shell colour-kinematics duality

Colour-kinematics duality can be realised as a potentially anomalous symmetry of
BV/BRST action [BJKMSW ‘20, ‘21, ‘22]

Tower of auxiliary fields A
ia “ pAµa

, B
µ⌫a

, C
µ⌫⇢a

, ¨ ¨ ¨ q

S
YM

Off-shell CK dual
“

ª
CijcabA

ialA
jb ` FijkfabcA

ia
A

jb
A

kc

cab “ cpabq fabc “ frabcs capbfa
cqd “ 0 frab|dfd

cse “ 0

Cij “ Cpijq Fijk “ Frijks CipjF i
kql “ 0 Frij|lF l

|ksm “ 0

Kinematic structure constants mirror colour structure constants
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S
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ª
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A

jb
A
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• Colour-kinematics duality is a symmetry of the action

• Fijk are structure constants of some kinematic Lie algebra

• Loop integrands from Feynman rules are colour–kinematics dual, but. . .

• . . . going off-shell may induce Jacobians Ñ unitarity counterterms

det

ˆ
` �fp�q

��

˙
“

ª
D�̄D� e

i
~

≥ˆ
�̄I�

I`�̄I
�fI

��J �J
˙

ñ colour-kinematics duality anomaly
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Double copy

BRST/BV action double copy [LB, Nagy ‘20; BJKMSW ’20; ’21, ‘22, ‘23]

CijcabA
ialA

ja ` FijkfabcA
ia
A

jb
A

kc Ñ CijC̃ı̃|̃A
iı̃lA

j|̃ ` FijkF̃ı̃|̃k̃A
iı̃
A

j|̃
A

kk̃

Parent Yang–Mills theories Daughter gravity theory

S
YM

BV
b S

YM

BV
S

gravity

BV
“

ª
d
D
x

?´gR ` ¨ ¨ ¨

Meiotic reproduction Einstein-Hilbert action ` axion dilaton

Double copy origin of symmetries:

(gauge, global susy, R-sym. . . )loooooooooooooooooooomoooooooooooooooooooon
(super) Yang–Mills symmetries

›Ñ (diffeomorphism, local susy, U-duality. . . )loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
(super)gravity symmetries

[Anastasiou, Duff, LB, Hughes, Nagy ’14; BJKMSW ’20]
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Questions

Okay, but. . .

• Proof is constructive and inductive: no theoretical understanding/control over
higher vertices or the set of auxiliary fields

• No closed form of colour-kinematics duality manifesting action

• No clue (generically) about the kinematic Lie algebra

• May need non-local field redefinitions ñ colour-kinematics duality anomaly

So we’d like. . .

• a clear mathematical characterisation of higher vertices

• a closed form colour-kinematics duality manifesting action

• to avoid the need for non-local field redefinitions ñ perfect all-loop
colour-kinematics duality

• an understanding of the kinematic Lie algebra

• a tensor product of some structure that generates double copy
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Homotopy algebras and scattering

amplitudes



Homotopy Lie algebras

Lie algebra g “ pV0, r´,´sq L8-algebra L “ pV, µkq
Vector space Graded vector space

V0
À

n Vn

Bracket Higher brackets

µ2 “ r´,´s µ1 “ r´s, µ2 “ r´,´s, µ3 “ r´,´,´s, . . .
Relations Homotopy relations

Antisymmetry ` Jacobi Graded antisymmetry ` homotopy Jacobi

Example: A semistrict Lie 2-algebra is a 2-term L8-algebra

L “ pV´1 ‘ V0, µkq

Differential µ1 “ r´s; Lie bracket µ2 “ r´,´s; Jacobiator µ3 “ r´,´,´s.

rrx, ys, zs ` p´1qxpy`zqrry, zs, xs ` p´1qypx`zqrrx, zs, ys “ ´rrx, y, zss

16
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Homotopy Lie algebras and quantum field theory

Cyclic L8-algebra

Every Lagrangian quantum field theory is an L8-algebra Ltheory

S
theory

BV
r�,�`s “

ÿ

k

1

k!
x�, µkp�, ¨ ¨ ¨ ,�qy “ 1

2
x�, µ1p�qy ` 1

6
x�, µ2p�,�qy ` ¨ ¨ ¨

Minimal model theorem

Every L is quasi-isomorphic (physically equivalent) to an L̃ – pH‚
µ1

pV q, µ̃iq

A
tree
n r�1,�2, ¨ ¨ ¨ ,�ns “ x�1, µ̃n´1p�2, ¨ ¨ ¨ ,�nqy

Factorisation into homotopy commutative C8-algebra

When there is flavour/colour g, L factorises (colour-ordering)

LYM “ g b CYM

Ñ Yang–Mills C8-algebra CYM with higher products mkp´,´, ¨ ¨ ¨ ´q

17
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µ1

pV q, µ̃iq

A
tree
n r�1,�2, ¨ ¨ ¨ ,�ns “ x�1, µ̃n´1p�2, ¨ ¨ ¨ ,�nqy

Factorisation into homotopy commutative C8-algebra

When there is flavour/colour g, L factorises (colour-ordering)

LYM “ g b CYM

Ñ Yang–Mills C8-algebra CYM with higher products mkp´,´, ¨ ¨ ¨ ´q

17



Homotopy Lie algebras and quantum field theory

Cyclic L8-algebra

Every Lagrangian quantum field theory is an L8-algebra Ltheory

S
theory

BV
r�,�`s “

ÿ

k

1

k!
x�, µkp�, ¨ ¨ ¨ ,�qy “ 1

2
x�, µ1p�qy ` 1

6
x�, µ2p�,�qy ` ¨ ¨ ¨

Minimal model theorem

Every L is quasi-isomorphic (physically equivalent) to an L̃ – pH‚
µ1

pV q, µ̃iq

A
tree
n r�1,�2, ¨ ¨ ¨ ,�ns “ x�1, µ̃n´1p�2, ¨ ¨ ¨ ,�nqy

Factorisation into homotopy commutative C8-algebra

When there is flavour/colour g, L factorises (colour-ordering)

LYM “ g b CYM

Ñ Yang–Mills C8-algebra CYM with higher products mkp´,´, ¨ ¨ ¨ ´q
17
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interactions

I



Colour-kinematics duality and BV⌅
8-algebras

Reiterer ’18

Colour-kinematics duality of physical tree-level S-matrix is equivalent to a
BV⌅8-algebra (deformation of BV8-algebras of [Galvez–Carrillo, Tonks, Vallette ‘09])

Off-shell colour-kinematics duality and homotopy algebras

Theory with kinematic Lie algebra ô a BV⌅8-algebra [BJKMSW ‘21, ‘22]

C “ B

rx, ry, zss ` rx, ry, zss ` rx, ry, zss “ 0 up to homotopies

“homotopy Jacobi relations ô colour-kinematics duality ”

See also [Bonezzi, Chiaffrino, Díaz–Jaramillo, Hohm ’23] up to four-points
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Perfect colour-kinematics duality

Strictification theorem

Every C8-algebra is quasi-isomorphic to a commutative algebra with only

m1p´q, m2p´,´q

Off-shell colour-kinematics duality implies strict BV⌅-algebra

A strict BV⌅-algebra B is dgca pV, d,m2q with b : V Ñ V such that

b2 “ 0, ⌅ :“ d ˝ b ` b ˝ d

and b is second order w.r.t mp´,´q so that

rx, ys “ bm2px, yq ´ m2pbx, yq ´ p´1qxm2px, byq

is a (shifted) Lie bracket: the kinematic Lie algebra
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The Chern-Simons paradigm

Chern–Simons theory has off–shell CK duality ñ Chern–Simons has a BVl-algebra

[Ben–Shahar, Johansson ’21; BJKMSW ’22]

S
CS

BV
“

ª
tr

´
1
2A ^ dA ` 1

3!A ^ rA,As ` A
` ^ pdc ` rA, csq ` 1

2 c
` ^ rc, cs

¯

BCS “ ⌦0 ⌦1 ⌦2 ⌦3
d d d

d:d:d:

dA “ dA, bA “ d:
A, m2pA,Bq “ A ^ B

dd: ` d:d “ l
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The Chern-Simons paradigm

Kinematic Lie algebra given by derived bracket

p´1qpr↵,�s “ ´d:p↵ ^ �q ` d:
↵ ^ � ` p´1qp↵ ^ d:

�

is Schouten–Nijenhuis algebra of totally antisymmetric tensor fields, the natural
Gerstenhaber algebra on three-dimensional Minkowski space [BJKMSW ‘22]

Restricting to fields yields diffeomorphism algebra identified in [Ben–Shahar, Johansson ’21]

Look for Chern-Simons-type actions!
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Holomorphic Chern-Simons theory on twistor space

Self-dual super Yang–Mills theory is equivalent to holomorphic Chern–Simons theory
on super twistor space Z – R4|8 ˆ CP 1 with local coordinates pxµ

, ⌘
i
,�

↵q

ShCS “
ª
⌦^ tr

´
1
2A^ B̄redA` 1

3!A^ rA,As `A
` ^ pB̄redc` rA, csq ` 1

2 c
` ^ rc, cs

¯
,

B̄red “ ê
↵
Ê↵ ` ê

0
Ê0, b “ ´ 4

|�|2 "
↵�

◆E↵ ◆Ê�
Bred ` 2"↵�

◆Ê↵
◆Ê�

ê
0^

B̄redb ` bB̄red “ l

• Kaluza–Klein expansion on CP 1 gives infinite tower of auxiliary fields required for
colour-kinematics duality

A
apx, ⌘,�q „ Apx, ⌘qa ` Apx, ⌘q↵a

�↵ ` Apx, ⌘q↵�a
�↵�� ` ¨ ¨ ¨

• Reproduces the kinematic Lie algebra of area-preserving diffeomorphisms on C2

identified in [Monteiro, O’Connell ‘11] cf. [Bonezzi, Diaz–Jaramillo, Nagy ‘23]

• Generalise to full Yang-Mills using ambitwistor space (to appear [BJKMSW ‘24])

22



Holomorphic Chern-Simons theory on twistor space

Self-dual super Yang–Mills theory is equivalent to holomorphic Chern–Simons theory
on super twistor space Z – R4|8 ˆ CP 1 with local coordinates pxµ

, ⌘
i
,�

↵q

ShCS “
ª
⌦^ tr

´
1
2A^ B̄redA` 1

3!A^ rA,As `A
` ^ pB̄redc` rA, csq ` 1

2 c
` ^ rc, cs

¯
,

B̄red “ ê
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0
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Pure spinors and tree-level colour-kinematics duality

Pure spinor actions: ª
⌦tr

´
 Q ` 1

3   
¯

• Super Yang–Mills tree-level colour–kinematics duality (b-ghost divergences
obstruct loop-level proof) [Ben–Shahar, Guillum ‘21; BJKMSW ‘23]

• Bagger–Lambert–Gustavsson and ABJM theories of M2-branes have tree-level
colour-kinematics duality [BJKMSW ‘23] as conjectured in [Bargheer, He, McLoughlin ‘12;

Huang, Johansson ’12]

• Double coy: cubic pure spinor actions for supergravity [BJKMSW ‘23]

• Natural conjecture: colour-kinematics duality for open string field theory
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Future directions

Curved backgrounds and classical double copy (beyond perturbation theory?)

Cf. [Monteiro, O’Connell, White ’14; Cardoso, Nagy, Nampuri ’16; Luna, Monteiro, Nicholson, Ochirov,

O’Connell, Westerberg, White ’16; Berman, Chacón, Luna, White ’18; Kosower, Maybee, O’Connell ’18; Bern,

Cheung, Roiban, Shen, Solon, Zeng ’19; Bern, Luna, Roiban, Shen, Zeng ’20; Chacón-Nagy, White ’21; Adamo,

Cristofoli, Ilderton ‘22 Lipstein, Nagy ‘23. . . ]
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Extra material for questions



Homotopy algebras

Consider a cochain complex pC‚
, dq

¨ ¨ ¨ C
i

C
i`1

C
i`2 ¨ ¨ ¨d d dd

d2 “ 0 with some compatible algebraic structure (“mulitplication” map m)

m : Ci ˆ C
j Ñ C

i`j ; px, yq fiÑ mpx, yq

dmpx, yq “ mpdx, yq ` p´qxmpx, dyq

Example: Hodge–de Rham complex ⌦‚pMq of i-forms with exterior derivative

mpAi, Ajq “ Ai ^ Aj “ p´qijAj ^ Ai, dpAi ^ Ajq “ dAi ^ Aj ` p´qiAi ^ dAj

is a differential graded commutative algebra (dgca)
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Homotopy algebras

Given a morphism ' : pC‚
, dq Ñ pC̃‚

, d̃q

¨ ¨ ¨ C
i

C
i`1

C
i`2 ¨ ¨ ¨

¨ ¨ ¨ C̃
i

C̃
i`1

C̃
i`2 ¨ ¨ ¨

d d dd

d̃ d̃d̃ d̃

'i`2'i`1'i

Q: Can the algebraic structure m on pC‚
, dq also be transferred to an algebraic

structure m̃ on pC̃‚
, d̃q?

A: Yes, if we allow for a richer homotopy algebraic structure
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Homotopy algebras

Algebraic identities (e.g. associativity, commutativity or Jacobi) hold only up to
cochain homotopies

Ñ tower of higher products dpxq “ m1pxq,m2px, yq,m3px, y, zq, . . .
mn : Ci1 ˆ C

i2 ˆ ¨ ¨ ¨ ˆ C
in Ñ C

i1`i2`¨¨¨in´n`2

Informally: generalise familiar algebras to include higher products satisfying higher
relations up to homotopies:

Associative algebras Ñ homotopy associative A8-algebras [Stasheff ‘63]

Commutative algebras Ñ homotopy commutative C8-algebras [Kadeishvili ‘82]

Lie algebras Ñ homotopy Lie L8-algebras [Zwiebach ’93; Hinich, Schechtman ’93]
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Homotopy Lie algebras: higher products and relations

ALGEBRA + HOMOTOPY = OPERAD [Valette ‘12]:

L8-algebras are given by degree one differential derivations on Lie!ppV r1sq˚q for
some graded vector space V

Operads are the appropriate mathematical arena for constructing homotopy algebras

Unpacking this definition: an L8-algebra L is a graded vector space V – À
i Vi

together with graded anti-symmetric i-linear maps

µi : V ˆ ¨ ¨ ¨ ˆ V Ñ V

of degree 2 ´ i that satisfy the homotopy Jacobi identities
ÿ

i “ j ` k

� P Shpj, k; iq

p´1qk�p�;v1,...,viqµk`1pµjpv�p1q, . . . , v�pjqq, v�pj`1q, . . . , v�piqq “ 0
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Homotopy Lie algebras: higher products and relations

The first three homotopy Jacobi identities are

µ1pµ1pv1qq “ 0

µ1pµ2pv1, v2qq “ µ2pµ1pv1q, v2q ` p´1q|v1|
µ2pv1, µ1pv2qq

µ2pµ2pv1, v2q, v3q ` p´1q|v1| |v2|
µ2pv2, µ2pv1, v3qq ´ µ2pv1, µ2pv2, v3qq

“ µ1pµ3pv1, v2, v3qq ` µ3pµ1pv1q, v2, v3q ` p´1q|v1|
µ3pv1, µ1pv2q, v3q

` p´1q|v1|`|v2|
µ3pv1, v2, µ1pv3qq

• The unary product µ1 is a differential and a derivation with respect to the binary
product µ2

• The ternary product µ3 captures the failure of the binary product µ2 to satisfy
the standard Jacobi identity
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