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Introduction: gravity as the square of gauge theory
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e Is gravity the double copy of the other fundamental forces of Nature?
[Feynman; Papini; Kawai, Lewellen, Tye; Berends, Giele, Kuijf; Bern, Dixon, Dunbar, Perelstein ,

Rozowsky. .. ]

e Renaissance: Bern—Carrasco—Johansson Colour—Kinematics (CK) duality
conjecture and double copy of gauge theory and gravity scattering amplitudes

[Bern, Carrasco, Johansson '08, '10; Bern, Dennen, Huang, Kiermaier '10]



Introduction: colour-kinematics duality

— Physical observables tested at particle accelerators (e.g. Large Hadron Collider)

Feynman diagram expansion

Explosion of complexity
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On-shell amplitudes paradigm
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— New insights into the underlying theories themselves



Introduction: colour-kinematics duality

Colour numerators ¢; ~ fup°fea®

1 cin;
An,L _ 7j i7by
YM Z i JIL (/,

i€cubic diag ~*

Kinematic numerators n; ~ e,p* + - -

Bern-Carrasco-Johansson colour-kinematics duality conjecture 2008:
Ci+(5j+(;k:O = ni+nj+nk:0

Proven at tree level [stieberger '09; Bjerrum, Bohr, Damgaard, Vanhove '09; Du, Teng '16; Bridges, Mafra

'19; Mizera '19; Reiterer '19...]

Conjectured at loop level with highly non-trivial examples [Bern, Carrasco, Johansson ‘08 '10;

Carrasco, Johansson '11; Bern, Davies, Dennen, Huang, Nohle '13; Bern, Davies, Dennen '14...]



Introduction: colour-kinematics duality

Assuming colour-kinematics duality is realised, gravity comes for free:
@55 ) )
Aglouns ~ ZJ % double copy kinematics
i

c, — n;

TNy
A ravitons ™ ZJ ~—
& d;

[Bern, Carrasco, Johansson '08, '10; Bern, Dennen, Huang, Kiermaier '10]

‘Gluons for (almost) nothing, gravitons for free’ JJ Carrasco
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Introduction: a question

Colour-kinematics duality exposed via powerful on-shell lens cf. Zvi Bern's lectures

Very hard to see at the level of field theory and action pricinples

Having discovered colour-kinematics duality on-shell can we now go back off-shell and
perhaps learn something new?

There is a mathematically precise understanding of colour-kinematics duality at the
level of actions that can be used to understand new and old examples



Introduction: categorification

2-arrows form a group under horizontal composition

LI N %

2-arrows form a groupoid under vertical composition

RN RS

o — '

g//
g//

Interchange law: horizontal and vertical composition are coherent

AN

Lie 2-group — Lie 2-algebra — strict 2-term L--algebra




Introduction: punchline

Colour-kinematics duality

Symmetry (possibly anomalous) of action with kinematic (homotopy) Lie algebra
derived from underlying (homotopy) BV' -algebra

[Borsten, Juréo, Kim, Macrelli, Saemann, Woelf (BJKMSW) ‘20, ‘21, ‘22, ‘23]
e Self-dual (super) Yang—Mills theories in D = 4
e (Super) Yang—Mills theories in all dimensions

e M2-brane world—volume theories



Introduction: punchline

Colour-kinematics duality

Symmetry (possibly anomalous) of action with kinematic (homotopy) Lie algebra
derived from underlying (homotopy) BV' -algebra

[Borsten, Juréo, Kim, Macrelli, Saemann, Woelf (BJKMSW) ‘20, ‘21, ‘22, ‘23]
o Self-dual (super) Yang—Mills theories in D = 4
e (Super) Yang—Mills theories in all dimensions

e M2-brane world—volume theories

Double copy
Gravity = gauge X gauge — tensor product of BV -algebras
[BJKMSW ‘20, ‘23; see also Bonezzi, Chiaffrino, Diaz—Jaramillo, Hohm '23]

e Bi-form gravity in D =2+ 1

e Cubic pure spinor action for supergravity



Manifesting colour-kinematics duality
in the Batalin—Vilkovisky formalism



Manifest colour-kinematics duality of tree-level physical S-matrix

There is a Yang—Mills action such that the Feynman diagrams yield amplitudes
manifesting colour-kinematics duality for tree-level amplitudes:

3
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[Bern, Dennen, Huang, Kiermaier '10; Tolotti, Weinzierl '13]



Manifest colour-kinematics duality of tree-level physical S-matrix

There is a Yang—Mills action such that the Feynman diagrams yield amplitudes
manifesting colour-kinematics duality for tree-level amplitudes:
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[Bern, Dennen, Huang, Kiermaier '10; Tolotti, Weinzierl '13]



Manifest colour-kinematics duality of tree-level physical S-matrix

This can be strictified to have only cubic interactions through infinite tower of

auxiliaries [Bern, Dennen, Huang, Kiermaier ‘10; Tolotti, Weinzierl '13; BJKMSW '21]

Sy tnell K = trdeI%Au OA* + 198, A, [A*, AY]

+ %B;l,l/h‘ D By,un - g(a/,LAV + %éﬁ{Biﬁuu)[A“v AV]
+ [olsd D (7“,;/ + (Olatds DE[LVK + CW'UK'/\ D (?uul{)\ +
+ gOM [Ap, Av] + 90uCH [ Ay, Ax] — £0,CH [0}, Ay, Ar]

+ gC* (3107 Clronp, P Av] + [07Clronvp, AMN) + - -

Purely cubic colour-kinematics duality manifesting Feynman diagrams:

cing
A:}ﬁ:z "/1 st. c+ci+eg=0=>mn;+n;+n,=0
(/



Manifest colour-kinematics duality of tree-level BRST extended S-matrix

To lift to loop-level we should include off-shell unphysical/ghost modes in the external
states so that we can glue trees into loops

Extend CK-duality to off-shell unphysical/ghost modes in the external states, the full
BRST-extended state space
(14}[((17 ba7 ca7 Ea)

[Anastasiou, LB, Duff, Hughes, Nagy, Zoccali '14 '18; LB, Nagy ‘20; BJKMSW '20, '21, '22]
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Longitudinal gluons p; - £; & 0 on external states =

colour-kinematics duality fails
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Compensate for these failures with new BRST-exact vertices [Bskmsw '20]:
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Manifest colour-kinematics duality of tree-level S-matrix

Longitudinal gluons p; - £; & 0 on external states =
colour-kinematics duality fails

Compensate for these failures with new BRST-exact vertices [Bskmsw '20]:

YM oYM
Son—shell BRST-extended CK — Son—shell CK HQRYck

YM D C.
SERST-extended CK = Son-shell CK + fd 25bab" — a0
— K¥ OK* — K5 OK20 — gfapec®ot(Abc)
_ 1Buwi|:|BMwi + gfabe ((/NA + f(}*vBa )AubAVC
— Gfane{ K50 AL AS + [ A2 A% + 2o0m i)
4 gfabc{}(gu[(auaucb)Ag + ((9”142)(311(30] + E(LAbuR'iC} 2 ooo

Proof is inductive and constructive: BRST colour-kinematics duality up to n-points
implies colour-kinematics duality up to (n + 1)-points

11



Off-shell colour-kinematics duality

Colour-kinematics duality can be realised as a potentially anomalous symmetry of
BV/BRST action [Bikmsw ‘20, ‘21, ‘22]

Tower of auxiliary fields A% = (AKe BHVe CHVPE ...

YM ; b o i e
SOff-shell CK dual = jCiJ'CHVbAwDAJ + Fijk fapc A" AT AP

Cab = C(ab) fabe = f[ab(,:] Ca(bfél)d =0 f[ab\df:;i]p, =0
i 1]
Ci; = Clj) Fijr = Fliji) CigFry =0 HFijiFlgym =0

Kinematic structure constants mirror colour structure constants

12



Off-shell colour-kinematics duality

Colour-kinematics duality can be realised as a potentially anomalous symmetry of
BV/BRST action [Bikmsw ‘20, ‘21, ‘22]

Sg?ﬂr-sheu CK dual = JCiqubAiaDAjb + FijkfabcAmAijkC
Cab = C(ab) fab(,: = f[zzbc] Ca(bfp,a)d =0 f[ab\df;;ihj =0
i ]
Cij = Cij) Fijk = Flijr) CiiFry =0 FlignFgym =0

e Colour-kinematics duality is a symmetry of the action
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YM ; i B i
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e Fjj, are structure constants of some kinematic Lie algebra

13



Off-shell colour-kinematics duality

Colour-kinematics duality can be realised as a potentially anomalous symmetry of
BV/BRST action [Bikmsw ‘20, ‘21, ‘22]

YM ; i B i
SOff-shell CK dual = JCiqubAmDA] + Fijkfape A" A7 A®

Cab = C(ab) fab(,: = f[abc] Ca(bfp,a)d =0 f[ab\dle:ihz =0

i 1
Cij = Cliy) Fijk = Fliji) CiiFry =0 FlijiiFigym = 0

e Colour-kinematics duality is a symmetry of the action
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Off-shell colour-kinematics duality

Colour-kinematics duality can be realised as a potentially anomalous symmetry of
BV/BRST action [Bikmsw ‘20, ‘21, ‘22]

YM ; i B i
SOff-shell CK dual = JCiqubAmDA] + Fijkfape A" A7 A®

d
Cab = C(ab) fab(,: = f[zzbc] Ca(bfg)d =0 f[ab\dfl;|g =0
i [
Cij = Cij) Fiji = Flijr) CiiFrn =0 FaguFlppm =0
e Colour-kinematics duality is a symmetry of the action
e Fjj, are structure constants of some kinematic Lie algebra

e Loop integrands from Feynman rules are colour—kinematics dual, but. ..

e ...going off-shell may induce Jacobians — unitarity counterterms
. sl
5 i (, I, 8f ,7)
det (11 . —J;f)) - JD)ZDXef"X XX X T X

= colour-kinematics duality anomaly

13



Double copy

BRST/BV action double copy [LB, Nagy ‘20; BIKMSW '20; 21, ‘22, ‘23]

C’ijcabAi“DAj“ + FijkfabcAiaAijku _ Cijéij_AiiDAjj 4 Fijkﬁ‘ijl_CAiiAjjAkIE

Parent Yang—Mills theories Daughter gravity theory
sy @ sy Sgg™ = [aPey=gR+ -
Meiotic reproduction Einstein-Hilbert action + axion dilaton

Double copy origin of symmetries:

(sauge, global susy, R-sym...) — (diffeomorphism, local susy, U-duality. . .)

(super) Yang—Mills symmetries (super)gravity symmetries

[Anastasiou, Duff, LB, Hughes, Nagy '14; BJKMSW '20]

14



Okay, but. ..
e Proof is constructive and inductive: no theoretical understanding/control over
higher vertices or the set of auxiliary fields
e No closed form of colour-kinematics duality manifesting action
e No clue (generically) about the kinematic Lie algebra

e May need non-local field redefinitions = colour-kinematics duality anomaly

15



Okay, but. ..
e Proof is constructive and inductive: no theoretical understanding/control over
higher vertices or the set of auxiliary fields
e No closed form of colour-kinematics duality manifesting action
e No clue (generically) about the kinematic Lie algebra

e May need non-local field redefinitions = colour-kinematics duality anomaly
So we'd like. ..

e a clear mathematical characterisation of higher vertices
e a closed form colour-kinematics duality manifesting action

e to avoid the need for non-local field redefinitions = perfect all-loop
colour-kinematics duality

e an understanding of the kinematic Lie algebra

e a tensor product of some structure that generates double copy

15



Homotopy algebras and scattering
amplitudes




Lie algebra g = (Vo, [—, —])

Leo-algebra £ = (V, )

Vector space

Graded vector space

Vo @D, Va
Bracket Higher brackets
H2 = [_7 _] H1 = [_]7 H2 = [_7 _]7 H3 = [_7_7 _]7 QIO
Relations Homotopy relations

Antisymmetry + Jacobi

Graded antisymmetry + homotopy Jacobi

A\N
N

Homotopy Lie algebras

16



Homotopy Lie algebras

Lie algebra g = (Vo,[—, —]) Leo-algebra £ = (V, )
Vector space Graded vector space
Vo @D, Va
Bracket Higher brackets
pe == -] =[] pe=[=—] pa=[-—--]..
Relations Homotopy relations
Antisymmetry + Jacobi Graded antisymmetry + homotopy Jacobi

Example: A semistrict Lie 2-algebra is a 2-term Lq;-algebra

£=(Vo1® Vo, )

Differential 1 = [—]; Lie bracket po =[—,—]; Jacobiator pu3 =/[—,—,—].

[lz, 4], z] + (=) +2 [y, 2], 2] + (-1)*@* [z, 2], 4] = ~[[z, 9, 2]]

16



Homotopy Lie algebras and quantum field theory

Cyclic Ly -algebra

Every Lagrangian quantum field theory is an Lo-algebra Cipeory

S0, = 5 <000 = G <6126,

17



Homotopy Lie algebras and quantum field theory

Cyclic Ly -algebra
Every Lagrangian quantum field theory is an Lo-algebra ipeory

o COUE) BB, ) = 3B (@) + =6, a(d 8 +

Minimal model theorem

Every £ is quasi-isomorphic (physically equivalent) to an By (HY, (V), i)
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Homotopy Lie algebras and quantum field theory

Cyclic Ly -algebra

Every Lagrangian quantum field theory is an Lo-algebra ipeory

o COUE) BB, ) = 3B (@) + =6, a(d 8 +

Minimal model theorem

Every £ is quasi-isomorphic (physically equivalent) to an By (HY, (V), i)

Agee[(bl:(b%"' s n] = (@1, fin—1(d2, -+, n))

Factorisation into homotopy commutative Cp-algebra

When there is flavour/colour g, £ factorises (colour-ordering)
Lym = 9@ Cym

— Yang—Mills Cwo-algebra €y with higher products|m(—, —, -+ —)

17



Colour-kinematics duality and BV® -algebras

Reiterer '18

Colour-kinematics duality of physical tree-level S-matrix is equivalent to a
BV, -algebra (deformation of BV -algebras of [Galvez—Carrillo, Tonks, Vallette ‘09])

18



Colour-kinematics duality and BV® -algebras

Reiterer '18

Colour-kinematics duality of physical tree-level S-matrix is equivalent to a
BV, -algebra (deformation of BV -algebras of [Galvez—Carrillo, Tonks, Vallette ‘09])

Off-shell colour-kinematics duality and homotopy algebras

Theory with kinematic Lie algebra < a BV -algebra [sikmsw ‘21, ‘22]

=955
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Colour-kinematics duality and BV® -algebras

Reiterer '18
Colour-kinematics duality of physical tree-level S-matrix is equivalent to a

BV, -algebra (deformation of BV -algebras of [Galvez—Carrillo, Tonks, Vallette ‘09])

Off-shell colour-kinematics duality and homotopy algebras

Theory with kinematic Lie algebra < a BV -algebra [sikmsw ‘21, ‘22]

=955

[z, [y, z]] + [z, [y, z]] + [z, [y,2]] =0 up to homotopies

> T A

"homotopy Jacobi relations < colour-kinematics duality

See also [Bonezzi, Chiaffrino, Diaz—Jaramillo, Hohm '23] up to four-points

18



Perfect colour-kinematics duality

Strictification theorem

Every C'x-algebra is quasi-isomorphic to a commutative algebra with only

ml(_)v m2(_7_)

19



Perfect colour-kinematics duality

Strictification theorem

Every C'x-algebra is quasi-isomorphic to a commutative algebra with only

ml(_)v m2(_7_)

Off-shell colour-kinematics duality implies strict BV*™-algebra

A strict BV -algebra 9B is dgca (V,d, m2) with b : V' — V such that
b2 =0, = dob+bod
and b is second order w.r.t m(—, —) so that
[2,y] = bma(z,y) — ma(bx,y) — (—1)"ma(z, by)

is a (shifted) Lie bracket: the kinematic Lie algebra

19



The Chern-Simons paradigm

Chern-Simons theory has off-shell CK duality = Chern-Simons has a BVH-algebra

[Ben—Shahar, Johansson '21; BJKMSW '22]

Sg\s, = Jtr(%A A dA+ %A A[A Al + AT A (de+ [4,¢]) + %c+ A e, c])

d d d
R 3 P —
Bes = QO° ot e T ol
af af af

dA=dA, bA=d'A, m2(A,B)=AArB

ddf +dfd =

20



The Chern-Simons paradigm

Kinematic Lie algebra|given by derived bracket
(—1)P[a, B8] = —dT(a A B) + dTa A B+ (—1)Pa A dTB

is| Schouten—Nijenhuis algebra| of totally antisymmetric tensor fields, the natural
Gerstenhaber algebra on three-dimensional Minkowski space [Bikmsw ‘22]

Restricting to fields yields diffeomorphism algebra/identified in [Ben-Shahar, Johansson '21]

21



The Chern-Simons paradigm

Kinematic Lie algebra given by derived bracket
(=1)P[a, B] = —dT(a A B) +dTa A B+ (=1)Pa A dTB

is Schouten—Nijenhuis algebra of totally antisymmetric tensor fields, the natural
Gerstenhaber algebra on three-dimensional Minkowski space [Bikmsw ‘22]

Restricting to fields yields diffeomorphism algebra identified in [Ben-Shahar, Johansson '21]

Look for Chern-Simons-type actions!

21



Holomorphic Chern-Simons theory on twistor space
Self-dual super Yang—Mills theory|is equivalent to| holomorphic Chern—Simons theory
on super twistor space| Z >~ R*48 x CP!|with local coordinates (zH,m*, \Y)

Shcs = jQ A tr(%A A Ored A + %A A[A Al 4+ AT A (Greac+[A, c]) + %c'*' A e, c])7

4 .4

- _ af B 0
= WQS A

[ v
LEul’Eﬂ (}rcd + 2¢€ LEQLE/;‘@

éredb + bared =0
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Holomorphic Chern-Simons theory on twistor space

Self-dual super Yang—Mills theory is equivalent to holomorphic Chern—Simons theory
on super twistor space Z ~ R*8 x CP! with local coordinates (zH,mt, \Y)

Shcs = jQ A tr(%A A Ored A + %A A[A Al 4+ AT A (Greac+[A, c]) + %c'*' A e, c])7

4 .4

- _ af B 0
= WQS A

& [e%
LEul’Eﬂ (}rcd + 2¢ LEQLE/;‘@

éredb + bgred =0

o Kaluza—Klein expansion on CP! gives infinite tower of auxiliary fields required for
colour-kinematics duality

A%(z,m,\) ~ A(z,m)® + Az, 1) Ao + Az, 7)*P*Aadg + -
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Holomorphic Chern-Simons theory on twistor space

Self-dual super Yang—Mills theory is equivalent to holomorphic Chern—Simons theory
on super twistor space Z ~ R*8 x CP! with local coordinates (zH,mt, \Y)

Shcs = jQ A tr(%A A Ored A + %A A[A Al 4+ AT A (Greac+[A, c]) + %c’*’ A e, c])7

4
IAI?

20

3 _ saf A0 7 _ af N aB, | .
Ored = €% Fqo + € Ep, b= € LEQLEﬂ&er + 2¢ Lpa g€ A

éredb + bgred =0

o Kaluza—Klein expansion on CP! gives infinite tower of auxiliary fields required for
colour-kinematics duality

A% (2,1, A) ~ Az, m)® + Az, n)* A + Az, 1)*PAadp + -

e Reproduces the kinematic Lie algebra of area-preserving diffeomorphisms on C?

identified in [Monteiro, O'Connell ‘11] Cf. [Bonezzi, Diaz—Jaramillo, Nagy ‘23]

e Generalise to full Yang-Mills using ambitwistor space (to appear [sikmsw ‘24])
22



Pure spinors and tree-level colour-kinematics duality

Pure spinor actions:

fﬂtr(\I/Q\Il + %\1/\1/‘1:)

23



Pure spinors and tree-level colour-kinematics duality

Pure spinor actions:
er(xm\p + %\p\w)
e Super Yang—Mills tree-level colour—kinematics duality (b-ghost divergences
obstruct loop-level proof) [Ben-shahar, Guillum ‘21; BIKMSW ‘23]
e Bagger—Lambert—Gustavsson and ABJM theories of M2-branes have tree-level
colour-kinematics duality [ikmsw ‘23] as conjectured in [Bargheer, He, McLoughlin ‘12;
Huang, Johansson '12]

e Double coy: cubic pure spinor actions for supergravity [sikmsw ‘23]

e Natural conjecture: colour-kinematics duality for open string field theory

23



Future directions

Curved backgrounds and classical double copy (beyond perturbation theory?)

Cf. [Monteiro, O'Connell, White '14; Cardoso, Nagy, Nampuri '16; Luna, Monteiro, Nicholson, Ochirov,
O'Connell, Westerberg, White '16; Berman, Chacén, Luna, White '18; Kosower, Maybee, O'Connell '18; Bern,
Cheung, Roiban, Shen, Solon, Zeng '19; Bern, Luna, Roiban, Shen, Zeng '20; Chacén-Nagy, White '21; Adamo,

Cristofoli, Ilderton ‘22 Lipstein, Nagy ‘23...]

24



Extra material for questions




Homotopy algebras

Consider a cochain complex (C*,d)

ok d O+l d Ci+2 d

d? = 0 with some compatible algebraic structure (“mulitplication” map m)

m:Clx C9 - CI; (2,y) — m(z,y)
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Homotopy algebras

Consider a cochain complex (C*,d)

ok d O+l d Ci+2 d

d? = 0 with some compatible algebraic structure (“mulitplication” map m)

m:Clx C9 - CI; (2,y) — m(z,y)

dm(x, y) = m(dx7 y) + (_)Im(x7 dy)
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Homotopy algebras

Consider a cochain complex (C*,d)

ok d O+l d Ci+2 d

d? = 0 with some compatible algebraic structure (“mulitplication” map m)

m:Clx C9 - CI; (2,y) — m(z,y)

dm(x, y) = m(dx7 y) + (_)Im(x7 dy)

Example: Hodge—de Rham complex Q° (M) of i-forms with exterior derivative
m(AZ,A]) = Az N Aj = (7)7']14] N A,L', d(Al N AJ) = dA,L A Aj + (*)zAl N dAJ

is a differential graded commutative algebra (dgca)

25



Homotopy algebras

Given a morphism ¢ : (C*,d) — (C*,d)

d o d Ci+l d Ci+2 d
I I I
i i i
I I I
1P 1Pit1 1Pit2
i i i
¥ ¥ ¥
sz’ Cw:+1 Cw:+2

o
a.
a.
a.

Q: Can the algebraic structure m on (C®,d) also be transferred to an algebraic
structure m on (C*,d)?

26



Homotopy algebras

Given a morphism ¢ : (C*,d) — (C*,d)

d o d Ci+l d Ci+2 d
I I I
i i i
I I I
1P 1Pit1 1Pit2
i i i
¥ ¥ ¥
sz’ Cw:+1 Cw:+2

o

a.
a.
a.

Q: Can the algebraic structure m on (C®,d) also be transferred to an algebraic
structure m on (C*,d)?

A: Yes, if we allow for a richer homotopy algebraic structure

26



Homotopy algebras

Algebraic identities (e.g. associativity, commutativity or Jacobi) hold only up to
cochain homotopies

— tower of higher products d(z) = mi(x), m2(z,y), ma(z,y, 2), ...

my 1 C x C%2 x ... x Cin — Cirtiztin—n+2

Informally: generalise familiar algebras to include higher products satisfying higher
relations up to homotopies:

Associative algebras —  homotopy associative Ay -algebras [stasheff ‘63]
Commutative algebras —  homotopy commutative C'n-algebras [Kadeishvili ‘s2]
Lie algebras —  homotopy Lie Lo-algebras [zwiebach '93; Hinich, Schechtman '93]

27



Homotopy Lie algebras: higher products and relations

ALGEBRA + HOMOTOPY = OPERAD [valette ‘12]:

Loo-algebras are given by degree one differential derivations on Lie'((V[1])*) for
some graded vector space V'

Operads are the appropriate mathematical arena for constructing homotopy algebras

28



Homotopy Lie algebras: higher products and relations

ALGEBRA + HOMOTOPY = OPERAD [valette ‘12]:

Loo-algebras are given by degree one differential derivations on Lie'((V[1])*) for
some graded vector space V'

Operads are the appropriate mathematical arena for constructing homotopy algebras

Unpacking this definition: an Loy-algebra £ is a graded vector space V = @, V;
together with graded anti-symmetric i-linear maps

i Vx-oxV-osyV
of degree 2 — 7 that satisfy the homotopy Jacobi identities
> (1) "X (os01 .00 Mo 41 (15 (Vo (1) - - > Vo () ) Vo (j+1)5 - - > Vo(s)) = O

i=j+k
o € Sh(j, k; )
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Homotopy Lie algebras: higher products and relations

The first three homotopy Jacobi identities are

p1(pi(v)) = 0
pr(p2(vi,v2)) = pa(pa(v1),v2) + (=) (o1, o (v2))

pa(p2(v1,v2),v3) + (—=1)1V11120 g (vg, pa (v1,v3)) — pa(v1, p2(v2,vs))
= p1(ps(vi,va2,v3)) + ps(pr(vi), v2,v3) + (=) pg (v, p1 (v2), vs)

+ (=)l 12l g (01, wa, p (v3)

e The unary product p; is a differential and a derivation with respect to the binary
product p2

e The ternary product u3 captures the failure of the binary product pg to satisfy
the standard Jacobi identity
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