Study of semitauonic B-meson decays at Belle and Belle II

Mateusz Kaleta

Institute of Nuclear Physics Polish Academy of Sciences, Krakow

June 2024

- Introduction and motivation
- Overview of current measurements
- Belle (II) Experiment
- Analysis
- Summary

Motivation

- $B \rightarrow D^{(*)} \tau \nu$ decays are sensitive to new amplitudes at tree-level, heavy lepton in the final state
- Large number of observables: $R(D^{(*)})$, polarisations τ i D^* , q^2 distributions,
- Good theoretical tools; precise SM predictions, small hadronic uncertainties.

$$\mathsf{R}(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

Combined R(D) and $R(D^*)$ in tension with SM prediction at 3σ level.

[M. Tanaka, R.Watanabe, New physics in the weak interaction of $B \rightarrow D^{(*)}\tau\nu$]

Current measurements: angular characteristics

D* polarisation at Belle

$$B^{0} \to D^{*-} \tau^{+} \nu_{\tau}$$

$$\tau^{+} \to \ell^{+} \nu_{\ell} \bar{\nu}_{\tau}, \tau^{+} \to \pi^{+} \bar{\nu}_{\tau}$$

 $F_L(D^*) = 0.60 \pm 0.08 \text{ (stat)} \pm 0.04 \text{ (syst)}$

- The signal yields obtained in the bins of cosθ_{hel} were re-weighted with the following scale factors (s_l) to correct for acceptance variations.
- Correction factors s_l extracted from MC assuming Standard Model decay dynamics

cosθ _{hel}	S
(-1, -0.67)	0.98 ± 0.01
(-0.67, -0.33)	0.96 ± 0.01
(-0.33,0)	1.08 ± 0.01

Results consistent with SM prediction at 1.6 σ – 1.8 σ

Karol Adamczyk. PhD thesis, [arXiv:1903.03102] (Belle Collaboration)

Mateusz Kaleta

D^* polarisation at LHCb (2023)

 $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$ $\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} (\pi^{0}) \nu_{\tau}$

 $F_L(D^*) = 0.43 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$

Compatible with SM predictions and with Belle results.

[arXiv:2311.05224v1] (LHCb Collaboration)

 τ polarisation at Belle

$$\begin{split} B &\to \bar{D}^* \tau^+ \nu_\tau \\ \tau^- &\to \pi^- \nu_\tau, \ \rho^- \nu_\tau \end{split}$$

 $P_{\tau} = -0.38 \pm 0.51 \text{ (stat)} \pm 0.20 \text{ (syst)}$

Consistent with SM prediction at 0.6σ [PRL118 211801 (2017), PRD97 012004 (2018)] (Belle Collaboration)

Both measurements performed assuming Standard Model decay dynamics.

Goal of this analysis

Main goal

- Enhancing experimental constraints on $B \rightarrow \bar{D}^* \tau \nu_{\tau}$ by precise measurements of angular observables.
- Focusing on $F_L(D^*)$.

Specific goals

- Model-independent corrections for acceptance effects
- Increase stastistics w.r.t. previous Belle analysis:
 - combined analysis of Belle and Belle II data
 - adding charged B channel: $B^+ \rightarrow D^* \tau \nu$
 - including more D decay channels in the analysis
- Perform measurements in several q² bins

- q^2 effective mass squared of the $\tau \nu$ system
- θ_{hel}(D^{*}) angle between D and B in D^{*} rest frame

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4}\left[2F_L(D^*)\cos^2\theta_{hel}(D^*) + \left(1 - F_L(D^*)\right)\sin^2\theta_{hel}(D^*)\right]$$

 q^2 and $\cos\theta_{hel}(D^*)$ can be reconstructed at B-factories with hadronic decays of B_{tag}

 $\label{eq:Generated (black) vs. reconstructed* (red) q^2 and <math>\cos\theta_{hel}(D^*)$ distributions for Belle (top) and Belle II (bottom).

*True kinematics is used for reconstructed events.

Decay channel: $\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}$ $D^{*+} \rightarrow D^0 \pi^+$ $\tau^- \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$

Signal decays generated assuming Standard Model decay dynamics.

Efficiency map

1. Pick four variables that characterize the decay and can be reconstructed experimentally:

- $\cos\theta_{hel}(D^*)$ cosine helicity angle D^*
- q^2 four-momentum transfer squared
- \tilde{E}_d normalised au daughter energy
- $\cos \theta_d \tau$ daughter polar angle

2. Create a 4D efficiency map by dividing reconstructed histograms by generated ones.

$$w_{ijkl} = \frac{N_{ijkl}^{rec}}{N_{ijkl}^{gen}} \frac{N_{total}^{rec}}{N_{total}^{rec}}$$

$$N_{iikl} - \text{number of events per bin}$$

Ntot - total number of events

1D projections of 4D efficiency maps. Each variable was divided in 5 equidistant bins. Plot generated for Belle geometry, using Standard Model decay dynamics.

Mateusz Kaleta

3. Reweight reconstructed distributions using w_{ijkl} to recover generated observables.

Generated (red) and reconstructed + reweghted distributions (blue). Plots made on independent sample generated with non-SM decay dynamics.

- Semitauonic B-meson decays currently on spotlight
- Improving experimental results for angular analyses can be useful for interpretation of current anomalies
- Studies on signal MC show the *D** polarisation measurement is challenging due to large acceptance effects
- We plan to apply model-independent acceptance corrections not considered
 previously