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Temperature of A Black Hole

Erice, EMFCS ozkarsligil.zeynep@metu.edu.tr

Figure: if we throw the Sun into a black hole what would happen to its
temperature?

2 novel ways to compute the surface gravity (κ) and the Hawking
temperature (TH) of a non-stationary black hole:
1) TH is given as the three-volume integral of the Gauss–Bonnet
invariant (or the Kretschmann scalar for Ricci-flat metrics) in the
total region outside the event horizon;
2) The surface integral of the Riemann tensor contracted with the
covariant derivative of a Conformal Killing vector on the event
horizon.
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Introduction
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“The law that entropy always increases holds, I think, the
supreme position among the laws of Nature. If someone
points out to you that your pet theory of the universe is
in disagreement with Maxwell’s equations - then so much
the worse for Maxwell’s equations. If it is found to be
contradicted by observation - well, these experimentalists
do bungle things sometimes. But if your theory is found
to be against the Second Law of Thermodynamics I can
give you no hope; there is nothing for it to collapse in
deepest humiliation.”

Arthur Eddington, New Pathways in Science
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Hawking Temperature
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TH =
ℏc3

8πGMkB
=

κ

2π
(1)

ζµ∇µζ
ν = −κζν (2)

• if the integral curves of the null Killing vector ζµ are restricted
to be affinely parameterized, then ∇ζζ = 0 and κ disappears.
So affine parameterization should not be imposed.

• a constant scaling of ζµ → aζµ, also scales κ→ aκ
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The P-tensor
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Pν
µβσ :=Rν

µβσ + δνσGβµ − δνβGσµ + Gν
σgβµ − Gν

βgσµ

+ (
R

2
− Λ(n + 1)

n − 1
)(δνσgβµ − δνβgσµ).

(3)

where Gν
β := Rν

β − 1
2Rδ

β
ν + Λδβν .

• contraction yields the Einstein tensor,
Pν

µvσ = (3 − n)Gµσ.
• does not obey ∇[µPρν]βσ ̸= 0, but for all of its indices

∇νPν
µβσ = 0. (4)
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Construction of Geometric Identity
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∇ν(Pνµ
βσFβσ) = Pνµ

βσ∇νFβσ. (5)

its potential as

Fβσ =
1
2

(
∇βχσ −∇σχβ

)
, (6)

and decompose χσ as follows

χσ := ξσ + ψσ, (7)

where ξσ is a Killing vector ( i.e. ∇βξσ + ∇σξβ = 0) and ψσ is a
generic vector
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Construction of Geometrical Identity
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Pνµ
βσR

σβ
ν
λ = −1

2
Hµλ − 1

4
gµλχGB +

2Λ(n − 3)
(n − 1)

Rµλ. (8)

valid for any smooth metric

∇ν(Pνµ
βσ∇βξσ) =

(2Λ(n − 3)
(n − 1)

Rµλ − 1
2
Hµλ − 1

4
gµλχGB

)
ξλ.

(9)
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Construction of Geometrical Identity
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∇µ∇ν(Pνµ
βσ∇βξσ) = ∇µ

(2Λ(n − 3)
(n − 1)

Rµλ − 1
2
Hµλ − 1

4
gµλχGB

)
ξλ.

(10)
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Construction of Geometrical Identity
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Let us concentrate on the left-hand side which reads

∇µ∇ν(Pνµ
βσ∇βξσ) =

1
2
[∇µ,∇ν ](Pνµ

βσ∇βξσ)

= Rµν
ν
λ(Pλµ

βσ∇βξσ)

+ Rµν
µ
λ(Pνλ

βσ∇βξσ)

= −Rµλ(Pλµ
βσ∇βξσ)

+ Rνλ(Pνλ
βσ∇βξσ). (11)
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Construction of Geometrical Identity
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∇µJ µ = 0

J µ := ∇ν(Pνµ
βσ∇βξσ) (12)

and

J µ =
(2Λ(n − 3)

(n − 1)
Rµλ − 1

2
Hµλ − 1

4
gµλχGB

)
ξλ. (13)
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Construction of Geometrical Identity
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J µ = ∇ν(Pνµ
βσ∇βξσ) = −1

4
ξµRραβσR

ραβσ. (14)

∇µJ µ = 0 (15)

yields a true conservation law
∂µ(

√
−gJ µ) = 0 (16)

∫
Σ

d3y
√
γ nµ∇ν(R

νµ
βσ∇βξσ) = −1

4

∫
Σ

d3y
√
γ nµξ

µRραβσR
ραβσ,(17)
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Surface Gravity
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Figure: M denotes the four (or generically n > 3) dimensional
spacetime, B represents the three (or generically n − 1) dimensional ball
for which the boundary is the cross section of the event horizon. Also,
M̄ = M−B × [−T ,T ] denotes the region of the spacetime between
the event horizon and the boundary of the black hole at infinity.
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Construction of Geometrical Identity
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use the Stokes’ theorem on the left-hand side as follows∫
Σ

d3y
√
γ nµ∇ν(R

νµ
βσ∇βξσ) =

∫
∂Σ

d2z

√
γ(∂Σ) nµσνR

νµ
βσ∇βξσ (18)

where ∂Σ is the (spacelike) boundary of the spacelike surface Σ
while σν is its spacelike outward unit normal vector and
γ
(∂Σ)
µν := gµν + nµnν − σµσν is the induced metric on it.
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Construction of Geometrical Identity
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Introducing the antisymmetric binormal as

ϵµν :=
1
2
(nµσν − nνσµ) , (19)

∫
∂Σ

d2z

√
γ(∂Σ)ϵµνR

νµ
βσ∇βξσ = −1

4

∫
Σ

d3y
√
γ nµξ

µRραβσR
ραβσ.(20)
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Surface Gravity of Kerr Black
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ζ = ∂t +ΩH∂ϕ, (21)

which is the horizon-generating null Killing vector field. Here ΩH is
the angular velocity of the event horizon given as

ΩH =
a

r2
H + a2 , (22)

which makes ζµζµ = 0 on the event horizon
So, using (21) in (2) one arrives at the known result for the surface
gravity of the Kerr black hole

κ =
r2
H − a2

2rH(r2
H + a2)

, (23)

and the Hawking temperature follows from (1)
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Application to Kerr Black Hole
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E [∂t ] = −
16πrHm2(r2

H − a2)

(r2
H + a2)3

. (24)

κ = − 1
32π

(
a

mrHΩH

)2

E [∂t ] , (25)

which is equivalent to (23). For the Schwarzschild black hole, a =
0 and one finds the correct limit κ = 1

4m .
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Conclusion and Further Works

Erice, EMFCS ozkarsligil.zeynep@metu.edu.tr

Our formulation is geometric in the sense that it is valid for any
gravity theory, for any n 4 dimensions. The contents of a theory
enter only after the geometric identity.

New geometric Identity can be used to obtain surface gravity κ for
non-stationary spacetimes

The new definition can be used on Vaidya Spacetime
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Thank You
for your attention.

Do you have any question?
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